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ABSTRACT

Consider a simulation experiment consisting of v independent vector observa-

tions or replications across k systems, where in any given replication one and only

one system is selected as the best performer (i.e., it wins) based on some perfor-

mance measure. Each system has an unknown constant probability of winning

in any replication and the numbers of wins for the individual systems follow a

multinomial distribution. The classical multinomial selection procedure of Bech-

hofer, Elmaghraby, and Morse (Procedure BEM), prescribes a minimum number

of replications, denoted as v*, so that the probability of correctly selecting the true

best system meets or exceeds a prespecified probability. Assuming that larger is

better, Procedure BEM selects as best the system having the largest value of the

performance measure in more replications than any other system.

In this research, we use these same v* replications across k systems to form (v*)k

pseudo-replications that contain one observation from each system, and develop

Procedure AVC (All Vector Comparisons) to achieve a higher probability of correct

selection (PCS) than with Procedure BEM. For specific small-sample cases and via

a large-sample approximation we show that the PCS with Procedure AVC exceeds
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the PCS with Procedure BEM. In a similar fashion, we show that with Procedure

AVC we achieve a given PCS with a smaller v than the v* required with Procedure

BEM.

We also consider the closely related problem of estimating how likely each

system is to be the best under both procedures. Surprisingly, estimating P[k] is a

different problem than estimating pj, j = 1,. . . , k. We show that the variance of

the AVC estimator is never larger than the variance of the BEM estimator (the

standard Maximum Likelihood Estimator) and quantify the reduction in variance

with the AVC estimator for specific small-sample cases and asymptotically.
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CHAPTER 1

INTRODUCTION

We consider the problem of selecting the best of a set of alternatives or systems

based upon a comparison among them. To begin, we consider an experiment

consisting of a series of independent trials across all systems where, on any given

trial, one and only one system is selected as the best performer (i.e., it wins). Each

system has an unknown constant probability of winning on any trial. We count the

number of wins for each system over all the trials and select the system with the

most wins as the best system. In such an experiment, the numbers of wins for the

individual systems follow a multinomial distribution. The problem of determining

which of the systems has the largest probability of being the best is known as the

multinomial selection problem (MSP);

In our context, we require a quantitative measure of the performance of each

system on each trial. Specifically, we consider the problem of determining which of

k simulated systems is most likely to be the best performer. A standard experiment

is to generate v independent vector observations or replications (i.e., trials) across

the k systems. Each vector replication produces a single performance measure for

each system.



Consider the following example. Suppose we are tactical war planning analysts

who are directed to provide the Joint Task Force Commander with the best plan

to cripple the enemy's command and control. "Best" means achieving the highest

level of cumulative damage expectancy (CDE) against a selected set of targets

given current intelligence estimates of enemy defense capabilities and available

friendly forces. Our team prepares four distinct attack plans and we simulate v

independent replications across all four plans. For each replication we compare the

CDE among each of the four plans. Since the chosen plan can only be executed

a single time, we select as the best plan the one that has the largest CDE in the

most replications.

Our goal in an MSP is to find the system that is most likely to be the best

performer among the systems, as opposed to identifying the best average performer

in the long run, with a minimum amount of data. A classical solution procedure for

the MSP, Procedure BEM (Bechhofer, Elmaghraby, and Morse 1959), prescribes

a minimum number of independent vector replications, v*, across all systems so

that the probability of correctly selecting the true best system meets or exceeds a

prespecified probability. Assuming that larger is better, BEM selects as best the

system having the largest value of the performance measure in more replications

than any other.

We propose a new solution procedure for the MSP that requires no additional

data, but is designed to increase the probability that the best system is so identi-

fied. Specifically, we propose using the same v* replications across k systems for

BEM to form (v*)k pseudo-replications, each containing one observation from each
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system, and selecting as best the system having the largest value of the perfor-

mance measure in more pseudo-replications than any other system. For specific

small-sample cases and via a large-sample approximation, we show that this new

procedure, Procedure AVC (All Vector Comparisons), dominates BEM in the sense

that AVC never requires more independent replications than BEM to meet a pre-

specified probability of correct selection (PCS). AVC represents a more efficient

use of the available data. From a simulation design point of view, we also show

that by using AVC we can achieve a given PCS with fewer replications than are

required to reach the same PCS with BEM.

MSP applications where AVC can be applied include selecting the best of a set

of tactical or strategic military actions as presented earlier. An example in the

area of structural engineering is finding the design that performs best in a one-

time catastrophic event, such as an earthquake. Some specific simulation examples

include selecting the schedule most likely to result in completing all jobs on time;

selecting the investment portfolio most likely to provide the largest return; or

selecting the computer system with the highest probability of completion of a

series of tasks without failure. Each of these applications involves the comparison

of quantitative measures of performance among competing systems, as opposed to

comparing qualitative differences. AVC requires a quantitative measure of system

performance for each system in each trial to be compared with the performance

measure of other systems across any or all of the remaining trials.

In some MSPs, the performance of the alternatives is measured qualitatively,

rather than quantitatively. Thus, rather than a comparison based on a numerical

measure of performance, we may only know which alternative won on any given
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trial. For example, in the areas of marketing research or opinion surveys, we

might be interested in determining the most popular brand, flavor, etc., or the

most favored candidate or position on a political issue. In such examples, we

cannot compare the preference for an individual alternative in one trial with the

preference for one of the remaining alternatives in another trial. For Procedure

AVC we only consider quantitative comparisons.

In an MSP we measure success in terms of the probability we select the true

best system, our PCS. However, the PCS contains no information about how likely

the system we selected as best is to actually be the best. In order to obtain this

additional information, we can obtain a point estimate for the probability of a

particular system winning on any given replication. These individual probabilities

are multinomial success probabilities, and we obtain different estimators for these

probabilities using BEM and AVC. The expected values of these estimators are

the same for both methods; however, we show that we obtain a variance reduction

with AVC over BEM and quantify this reduction for specific cases. In this light,

we also compare AVC and BEM in terms of the precision of the point estimators

provided by each method.

This paper is organized into two chapters, each written in the form of a self-

contained journal article. Chapter 2 covers the multinomial selection problem and

our new approach to solving it, Procedure AVC. Chapter 3 considers the related

point estimation problem and extends our results into this context. Appendix A

contains proofs, Appendix B presents additional simulation results, and Appendix

C provides the source code used.
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CHAPTER 2

EFFICIENT MULTINOMIAL SELECTION IN
SIMULATION

2.1 Introduction

Suppose we have k > 2 independent populations, denoted 7r1 , 7 2, ... 7,k. In a

simulation context each population is a simulated system. We consider the problem

of selecting the best of the k systems based on simulated results for all of the

systems.

Let Xji represent the ith replication from system j of some performance mea-

sure. Each system (rj, j 1,..., k) has an unknown constant probability (pj, j 

1,.. . , k) of having the largest value of the performance measure. Assume we have

generated v independent replications from each of the k systems. We define the

best system as the system most likely to have the largest performance measure in

any comparison across all systems. Such a comparison corresponds to a multino-

mial trial, where one and only one system can win in any given trial. Our objective

is to find the system that is most likely to be the best performer in a single trial
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among the systems, as opposed to identifying the best average performer over the

long run, with a minimum amount of data. This is known as the multinomial

selection problem (MSP).

A classical solution procedure for the MSP, Procedure BEM (Bechhofer, El-

maghraby, and Morse 1959), prescribes a minimum number, v*, of independent

vector replications across all systems so that the probability of correctly selecting

the true best system meets or exceeds a prespecified probability. Assuming that

larger is better, BEM selects as best the system having the largest value of the

performance measure in more replications than any other.

MSP applications include selecting the best of a set of tactical or strategic

military actions. An example in the area of structural engineering is finding the

design that performs best in a one-time catastrophic event, such as an earthquake.

Simulation examples include selecting the schedule most likely to result in com-

pleting all jobs on time; selecting the investment portfolio most likely to provide

the largest return; or selecting the computer system with the highest probability

of completing a series of tasks without failure. Each of these applications involves

the comparison of quantitative measures of performance among competing systems

as opposed to comparing qualitative measures. For the type of MSP considered

in this study, we require a quantitative measure of system performance for each

system in each trial to be compared with the performance of other systems across

any or all of the remaining trials.

Let Xi = (X1 i, X 2i,..., Xki) represent the jth replication across all k systems.

Let Y i = 1 if Xji > X~i, for f = 1, 2,..., k, but f : j; and let Yi = 0 otherwise.

In other words, I/1i = I if Xji is the largest observation in Xi. In case of a

6



tie for the largest value, we randomly select one of the tied populations as the

best. In terms of our simulation example involving the best investment portfolio,

Xjj represents the return generated for Portfolio 1 on the ith replication. If the

return on Portfolio 1 exceeds the returns of all the remaining portfolios in that

replication, then Portifolio 1 wins (Y . = 1) and all the remaining portfolios lose

(7ii = 0; j = 2,3, ... , k). If more than one portfolio ties for the largest return

then we randomly select one of these to be the winner in that replication.

Suppose that there are v independent replications across all systems, and let

I" = Z 1 iYji represent the number of times system j wins out of these v repli-

cations. Let pj= Pr{Xji > Xti, Vf j} where 0 < pj < 1 and _j=lP = 1.
Th j=l v and the k-variate discrete random variable Y (1 ' ,....., )

follows a multinomial distribution with success probabilities p (p, P2, .. ,pk).

Therefore, the probability mass function for Y with parameters v and p is

v! 
j

Pr{Y =yi, Y2= Y2,.., yk)- I PJ•

1j=l yj j=1

For a standard MSP with v replications from each system, we have v indepen-

dent comparisons (trials) to use in selecting the best system. For an experiment

involving physical measurements of system performance at common times, it makes

sense to group the observations across systems for the same trial due to possible

variations in extraneous factors beyond the experimentor's control. Also, in some

instances, the performance of the competing systems may be measured qualita-

tively, or may only indicate which system won in a given trial. In such cases, there

is no quantitative measure we can compare across systems in different replications.

Examples include marketing research or opinion surveys where the data collected

are categorical (e.g., favorite brand, food, or political candidate).
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Due to convention and convenience when comparing simulated system re-

sponses, the responses are typically grouped by replication, corresponding to a

trial in a physical experiment. Grouping system responses in this fashion is ar-

bitrary and since our simulated responses are quantitative, we can compare any

observation from one system with any observation from each of the remaining sys-

tems. This means that a single observation from system 1 can be grouped in a

vector comparison with any one of the v observations from system 2, and with any

one of the v observations from system 3, and so on, up to and including any one

of the v observations from system k. Since there are v observations from system 1

as well, this gives us a total of vk vector comparisons (trials) that can be formed

with v independent observations from the k systems. We incorporate this setup

in a new MSP procedure, which we call AVC, for All Vector Comparisons. By

performing only the v vector comparisons where the observations for each system

are from the same replication, as is done with BEM, we disregard the information

available from the remaining vk - v comparisons.

Our results suggest a number of advantages of AVC over BEM. For specific

small-sample examples, we show that AVC has a larger probability of correct se-

lection (PCS) than BEM for a fixed v. We show this analytically for small values

of v and k, and also present simulation results for up to k = 10 systems and v = 50

vector replications. Looking at these results from a slightly different perspective,

we also demonstrate acheivement of a desired PCS with a smaller value of v when

8



using AVC as compared to BEM. The first perspective emphasizes a more effi-

cient use of the available data to increase PCS. The second view points towards a

more efficient way to design a simulation experiment using the smallest value of v

required to achieve a desired PCS.

Unlike BEM, the PCS for AVC depends on the distributions of the simulation

outputs, not just on pl,-. . pk. However, we also show that the dependence is weak.

This fact, along with the difficulty of analytically evaluating the PCS of AVC for

even small k and v, leads us to a large-sample approximation (LSA) for the PCS

using AVC. As v --+ oo, any distributional differences in PCS with AVC disappear.

Therefore, our LSA is distribution independent and converts an AVC problem into

an equivalent BEM problem. Our LSA demonstrates that asymptotically the PCS

with AVC is larger than the PCS with BEM. Additionally, this LSA shows that

AVC can provide better discrimination between the systems at the same level of

confidence and with the same data.

This paper is organized as follows: We first provide a brief review of the MSP

and the classical approach to solving it. Then we describe our new procedure, AVC,

and present analytical results covering a variety of specific population distributions

for the performance measures. Our LSA is then presented by recasting PCS in

terms of a point estimation problem for the multinomial success probabilities,

pj, j = 1,. . . , k. Empirical results follow for specific distributions and include

simulations designed to test the robustness of our LSA.
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2.2 Background

Bechhofer, Elmaghraby and Morse (1959) describe a single-stage procedure for se-

lecting the multinomial event (population or system) which has the largest success

probability. BEM requires the specification of P* (where 1/k < P* < 1), a min-

imum probability of correctly identifying the population with the largest success

probability (i.e., the best population), and 0* (where 1 < 0* < oc), the minimum

ratio of the largest success probability to the second largest success probability that

we want to be able to detect. The procedure, as adapted to simulation, consists

of the following steps:

Procedure 2.1 (BEM)

1. For given k and 0*, find the minimum value of v, denoted v*, that guarantees

that the PCS is at least P*.

2. Generate v* independent replications for each population.

3. Compute FZ j 1Yj, for j 1,2,..., k.

4. Let )ji) < 1"(2) < "'" < Ik) be the ranked sample counts from step 3. Select

the population associated with the largest count, Y(k), as the best population.

In case of a tie for the largest count, randomly select one of the tied popula-

tions as the best.

To determine the appropriate v* in step 1, let P[i] < P[2] 5 < P[k] denote the

ranked success probabilities for the k populations. Since only values of the ratio
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0 = P[k]/P[k-1] greater than or equal to 0* are of interest, we are indifferent between

the best and the next-best population for values of 0 < 0*. A procedure of this

type is referred to as an indifference-zone approach. Select v* as the minimum

number of independent vector observations required to achieve a PCS greater than

or equal to P* whenever 0 > 0*.

We define the least favorable configuration (LFC) of p = (P[1],P[2],... ,P[k]) as

the configuration where PCS is a minimum over all configurations with 0 > 0*

(Gibbons, Olkin, and Sobel 1977). If we obtain a PCS > P* with our selected v*

under the LFC, then a PCS of at least P* can be guaranteed for any configuration

of p with 0 > 0". Keston and Morse (1959) prove that the LFC for BEM is given

by

1
P[i] = P[21 = P[k-1] - 0* + k 1

0*
P[k] =(2.1)0* + k - 1

Although we only need to consider the LFC for designing sampling plans, the PCS

can be calculated for any p with P[k] > P[k-1] as follows.

Let 7[j] be the population associated with p[j] and let y[j] represent the number

of wins for 7r[j]. Thus, the subscripts for the populations and the associated number

of wins are based on the ranking of the pjs. We refer to the PCS using BEM for

a fixed k and v as PCSber . For any fixed k and v, PCSbemcan be expressed as

PCsbe(P) 1t k V [j]Yj=I Y[j] Yj]

where the summation is over all vectors y= (Y[],-. , Y[k]) such that Zj=i yj

11



V, Y[k] Y[] (j 1, 2,..., k - 1), where t(y) is a function of Y[1], ... ,Y[k], repre-

senting the number of populations tied for the most wins (Bechhofer, Elmaghraby,

and Morse 1959).

2.3 All Vector Comparisons (AVC)

We propose a method to provide a PCS greater than or equal to PCSbem (in at

least some cases) using the same replications Xj, i = 1, 2,..., v. We use the BEM

parameters k, P*, and 0*, and we execute the first step of BEM to find a value

of v*. However, rather than comparing the it h replication for each system with

the ith replications of the other systems, consider instead a total of (v*)k pseudo-

replications formed by associating each Xjj (j = 1, 2,. . ., k; i = 1, 2,. .. , v*),

with all possible combinations of the remaining Xth (f = 1, 2, ... , k; f 0 j; h =

1,2,...,v*). Each such pseudo-replication contains one observation from each

population. Note that the (v*)k pseudo-replications include the v* independent

replications from which the pseudo-replications are formed.

Define
v v v k

3 E E .E I (X - (2.2)
a 1 =1a 2 =1 ak=l f=1;ej

for j 1, 2, ... ,k with

1, a>0

0() 0, a <0
¢b(a) = randomly assign

0or1, a=0.

Thus, Zj represents the number of times out of vk pseudo-replications that pop-

ulation 7rF wins (ties broken randomly) and j=l Zj = vk.

12



As a specific illustration of how the pseudo-replications are formed, consider

k = 3 systems with v = 2 observations generated for each. Our original replications

and counts (I, j 1, 2, 3) are then

XI X 21 X 3 1

X 12 X22  X32

Y1  2 3

We will have a total of vk (23 = 8) pseudo-replications including our two original

replications when using AVC. These pseudo-replications and the associated counts

(Zj, j = 1, 2,3) are

X 1 l X 21 X 3 1

XII X 21 X32

XI1  X22  X 31
XII X 22  X 32
X 12  X 21 X 31

X 12 X 2 1 X 3 2

X 12  X 22  X 31

X 12  X22  X 32

z1  z 2  z 3

Our new procedure consists of the following steps:

Procedure 2.2 (AVC)

1. Given values for k, P*, and 0*, use step I of Procedure BEM to determine a

value for v*.

2. Generate v* independent replications for each population and construct the

additional (v*)k - v* pseudo-replications possible with one value from each of

the populations.

3. Compute Zj using Equation (2.2).

13



4. Let Z(l) < Z(2) < ... < Z(k) be the ranked sample counts from step 3. Select

the population associated with the largest count, Z(k), as the best population.

In case of a tie for the largest count, randomly select one of the tied popula-

tions as the best.

Later we demonstrate for specific cases that the PCS with AVC, referred to as

PCSavc, is greater than or equal to PCSbem.

As written, step 1 of Procedure AVC uses the same number of replications as

BEM. Suppose we modify step 1 to use the minimum v where PCSavc > P*. We

demonstrate later that a smaller number of replications are required with AVC

relative to BEM to achieve P*. We provide such values of v in this paper.

PCSav can be expressed as

1

PCsavc(P) = 1 Pr{Z[I] = z[1]...,Z[k] = Z[k]},
(Z (z)

where the summation is over all vectors z = (Z[I],.. , Z[k]) such that j=1 zj

vk, Z[k] > Z[j], j 1,2,..., k - 1, where t(z) is a function of Z[i],..., Z[k], repre-

senting the number of populations tied for the most wins. Unfortunately, Z does

not follow a multinomial distribution, so we must refer to the distributions of the

original observations, Xjj, to calculate PCSvc. Analytical and simulation results

using a number of different population distributions show that PCSav depends

weakly on the underlying distributions of the Xjis.

14



2.4 Analytical Results
I

The following analytical study illustrates a number of important properties of the

AVC method. First, we demonstrate the improvement possible with AVC for spe-

cific cases. We also show a weak dependence in the AVC results on the underlying

population distributions for the Xji. Lastly, we demonstrate the difficulty in ob-

taining analytical results for even a small number of populations and observations,

and thus provide motivation for our large sample approximation of PCSvC which

is distribution independent.

2.4.1 Small-Sample Results

Initially, we restrict our attention to continuous distributions for the Xjis, which

eliminates the possibility of ties among the observations. We let l-[k] be the best

population and assume all the remaining populations, 7r[1],..., i-[k-], are identically

distributed. This setup gives us the LFC for BEM. We also consider all population

distributions to belong to the same parametric family. We will calculate PCSav by

conditioning on the joint density of all the order statistics for the v independent

replications from 7r[k].

Consider a set of v vector replications across all populations. Combine all the

observations from all populations and rank them from smallest to largest. Refer

to each observation by its rank and consider permutations of these ranks. For any

such permutation we can determine the value of Z[k] and calculate the probability

15



of obtaining that arrangement of ranks. We refer to such an arrangement as a rank

order. Recall that Z[k] represents the number of times the best population, 7r[k],

wins out of the vk pseudo-replications. For illustrative purposes, let X represent an

observation from r[k] and let 0 represent an observation from any of the remaining

inferior populations.

As an example, suppose k = 3, v = 2. Then

Pr{Z[3] = 8} = Pr{O(1) < 0(2) < 0(3) < 0(4) < X(1) < X(2)1 (2.3)

Pr{Z[3] = 6} = 4 Pr{0(i) < 0(2) < 0(3) < X(1) < 0(4) < X( 2)} (2.4)

Since we do not know which of the four Os is associated with which rank, we

must account for all permutations of the Os that result in a different combination

of adjacent Os. For probability statement (2.3), there is only one combination of

adjacent Os from the 4! permutations of the Os that is less than both Xs. In

the rank order for probability statement (2.4), since any one of the Os can be

associated with 0(4), we have four distinct combinations (in terms of which set of

Os are adjacent) that result in this one rank order. This is why the coefficient

'4' appears on the right-hand side of Equation (2.4). In general this coefficient is

(n ) where n = v(k- 1) is the total number of observations from the inferior

populations and r is the largest number of these observations that are adjacent.

Similar arguments can be used to derive expressions for possible values of Z[k] for

integers k, v > 2. For this example, there is only a single rank order that results

in each value of Z[k]. As k or v get even moderately large, there will be multiple

rank orders that result in the same value for Z[k]. In addition, for larger k and

v we must also take into consideration how many of the combinations contain an

16



observation from each of the inferior populations. Therefore, the calculation of the

probability of each value of Z[k] becomes extremely tedious with increasing k or v.

Restricting our attention to k = 2 populations, it is interesting to note that

the vector comparisons with AVC are analagous to the comparisons that form the

Wilcoxon rank-sum statistic (Randles and Wolfe 1979). Let W equal the sum of

the ranks of the observations from the best population. Then W47 is the Wilcoxon

rank-sum statistic and our Z[2] is the Mann-Whitney U statistic. Therefore, W

can be expressed as a function of our Z[2] as

W = Z[2] + _V 1

In terms of W, AVC always makes a correct selection for W > E[W] (incorrect

selection for W < E[W]), where E[W] is the expected value of W under the

assumption that the two populations are identical in distribution.

If we specify a particular distribution family for our populations, then we can

derive formulas to compare PCSavc with PCSbem for small k and v. We present

results for exponential, continuous uniform, and Bernoulli distributions.

17



2.4.2 Exponential

First, consider X - exp(A) and 0 - exp(p) and let A < IL, where A > 0 and

p > 0 are exponential rates. This particular example was suggested by Goldsman

(1995) in some early discussions concerning this research. For k = 2, v = 2, we

have P[2] = Pr{X > 0} = t/(A + pu) and p[i] = Pr{X < 0} = A/(A + i). To

calculate PCSbe, we need to consider vectors Y = (1ji], 1/[2]) such that 1[2] /[i].

With v = 2, the only possible Ys with )112] i] are (0, 2) and (1, 1). This gives

us
1

pCSbem Pr{Yj 2] = 2} + I Pr{lj2] = 1} (2.5)
2

P2] + 2 P[1]P[2]

Similarly, to calculate PCSvC, we need to consider vectors Z = (Z[11, Z[2]) such

that Z[2] _> Z[I]. With vk = 4, the only Zs with Z[2] > Z[1] are: (0, 4), (1, 3), (2, 2).

So
1

PCsavc = Pr{Z[2] = 4} + Pr{Z[] 3} + - Pr{Z[2] = 2}. (2.6)
2

When X - exp(A), the joint distribution of (X[i], X[2]) is f12(a, b) = 2A 2e- (a+b).

The probabilities on the right-hand side of Equation (2.6) can then be found as

follows:
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Pr{Z[2] 4} Pr{O(1) < 0(2) < X(I) < X(2)}
f'oo b(1- e-a)2 2A2 e-(a+b) da db

t2

(2A +p)(A +p)

Pr{Z[2] ---3} - - e-b)2A2e-(a+b)dadb

2A/t 2

(2A + ) (A + t) 2

Pr{Z[2] 2} J(e -Ia - e-b) 22A2e-a+b)dadb +

2f' fb( - -tpa)e-tb2A 2e A(a+b)da db

2A/t(A 2 + 4A/u + /t2)

(2A + p) (A + 2p) (A + IL)2

Therefore,

PCSavc = p(A 2 + 64t + 2 I 2)(2A + p) (A + 2p) (A + M)

Given expressions for both PCSber and PCSavc, we can find the increase in

PCS with AVC as

APCS PCs avc - PCSbem

-A >0. (2.7)(2 A + I) (A + 2p) (A + /)

The (t - A) > 0 term in Equation (2.7) shows that when X is the best population,

AVC always shows an improvement in PCS over BEM.

Similar calculations for k = 2 and v = 3 result in

Pcsbem _P 2 (3A + p)
(A + I) 3

PCs ar c = A 2(20A5 + 159A4 /1 + 344A3/t 2 + 273A 2/13 + 92,Y4 + 12pL5)
(3A + 2/)( 2 A + 3fL)( 2 A + p)(A + 2p)(A + p)3
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and
APCs A 2 2(16A2 + 37Aj- + 16/j 2 )( ) > 0.

(3A + 2p)(2A + 3p)(2A + /t)(A + 2)(A + p)3

Also for k = 3 and v = 2 we obtain

Pcsbem 21,2

(A + 2u)(A +p)

pCav c = 2p, (3 A4 + 100Ap + 267A~p 194Ap + 36 )

PCs (2A + 3p) (2A + p) (A + 4t) (A + 3p) (A + 2y) (A + p)2

and

APCs - 2Ap 2 (4A3 + 41A 2p + 84A1? ± 41p3)(p, - A) > 0.
(2A + 3p)(2A + p)(A + 4p)(A + 3p)(A + 2p)(A + p)2

Each of the expressions above for the difference in PCS between AVC and BEM

has a (p - A) > 0 term, implying an increase in PCS with AVC.

2.4.3 Continuous Uniform

Consider k = 2 and v = 2 where X and 0 come from continuous uniform distri-

butions. Specifically X U(0, B) and 0 - U(0, A), where 0 < A < B. Then we

have P[2] = Pr{X > 0} (2B - A)/2B and P[i] Pr{X < 0} = A/2B. From

Equation (2.5) we obtain

Pcsbem- 2B - A

2B

The joint distribution of (X[], X[2]) is f12(g, h) = 2/B 2. Then using Equa-

tion (2.6) we find
A 2 + 2AB - 6B 2

PCs 6B 2
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As we did for our exponential example, we can find the improvement in PCS with

AVC is

P A(B- A)
APCS - 6B >0.

Similar calculations for k = 2 and v 3 result in

APCS = 3A 2 (B - A) > 0.

20B
3

Also for k = 3 and v = 2 we obtain

-APCS = 7A(B - A) > 0.
15B 2

Each of the expressions above for the difference in PCS between AVC and BEM

has a (B - A) > 0 term, again indicating an improvement in PCS with AVC.

2.4.4 Bernoulli

As an illustration of how AVC compares to BEM for discrete distributions, let

X Bern(p,,) and 0 - Bern(po) with Px > po. For k = 2, v = 2, we have

P[2] Pr{X > 0} = (Px + 1 - po)/ 2 and P[1] Pr{X < 0} = (p0 + 1 - px)/ 2 .

From Equation (2.5) we obtain

pCSbem (Px + 1 po).
2

PCSavc can be calculated in a similar fashion as we did for our exponential and

continuous uniform examples,

aVC 1 1 3 1
PCs 4 (Pao- P2) + 2 PxPo(Px Po) + 4(PX Po) + 2
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Then calculating the difference in PCS,

APCS 1 (1 + 2pxPo - Px - PO)(Px - Po) > 0. (2.8)
4

We again see a term, (px -po) > 0 in Equation (2.8), which illustrates an improve-

ment in PCS with AVC when X is the better population.

2.4.5 Effect of Population Distributions on AVC

Our analytical results are presented for single values of k and v for each of the

distributions. To compare PCSavC across the distributions, we use a fixed value

of k and v and vary 0 = P[kl/P[k-1]. We display these results using the ratio of

improvement PCSavc/pCSbem plotted against 0. Recall that PCSbem is distribution

independent.

Figure 2.1 shows results for exponential, continuous uniform, and Bernoulli

populations at k = 2, v = 2. The exponential and uniform curves depend only

on 0 and approach 1 as 0 approaches infinity. However, for the Bernoulli results,

we must specify a value for either px, or Po, which forces an upper limit on the

value of 0 as p, approaches 1 or as P0 approaches 0. We set p, = 7/8 and then

limpo.0 0 = 15. Figures 2.2 and 2.3 display results for exponential and continuous

uniform populations at k = 2, v = 3 and k = 3, v = 2 respectively.

There are some significant results to gleen from Figures 2.1- 2.3. First, notice

the spread between the results for the different populations is quite small (a maxi-

mum of roughly 5% for k = 3, v = 2, and on the order of 1% for k = 2, v = 2 and

k = 2, v = 3), and this spread drops off as 0 approaches one. This indicates that
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0

Figure 2.1: Exponential, Uniform and Bernoulli Populations: k 2, v 2, px 8

as the difference between the best and the next system gets smaller, the distribu-

tional dependence becomes weaker. Also notice that the maximum improvement

with AVC, indicated by the peaks in the curves, occurs roughly over a range of 0

between 1.5 and 3 for all the distributions. This covers most of the practical range

of 0 included in standard tables and used by experimentors.

The weak distributional dependence of PCSvc, along with the difficulty of

computing PCSavc for small k and v, motivates the following large-sample approx-

imation (LSA).
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Figure 2.2: Exponential and Uniform Populations: k 2, v 3

2.5 Large-Sample Approximation

The results presented so far for small k and v show that PCSvc is weakly distribu-

tion dependent. By redefining our PCSber and PCSavc in terms of point estimators

for each of the individual system success probabilities, we arrive at distribution-free

results as the sample size goes to infinity.

2.5.1 Preliminaries

Using our previous notation we have

pj = Pr{Xj > Xfi, 7V 4 J}.
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Figure 2.3: Exponential and Uniform Populations: k = 3, v 2

Let the distribution of Xjj depend upon the sample size, Xj - Fv). We constructLethe isuchbtatthef. ov

tek)  such that the Fj v) converge to a common distribution, F, for all j as v

approaches infinity and for finite v

Pr {Xjj > Xjf I sample size v} pj(v)

1 (2.9)

Define

I-(v) = number of wins for system j under BEM with sample size v

Zj(v) = number of wins for system j under AVC with sample size v

which gives us point estimators

Pj (V) = 
5(V)

V
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:j53(v) Zj(v)
vk

So our BEM estimators are denoted by )3j and our AVC estimators by fij. Under

(2.9) Population 1 is the best. Notice that (ignoring the asymptotically vanishing

probability of a tie)

PCSbem Pr{j l > )j, Vj # 1}

PCSavc Pr{ 1 > Pj, Vj 0 1}.

Our approach is based on the fact that standardized versions of )3 and p are

asymptotically multivariate normal (MVN). However, when the distributions are

fixed then as the sample size increases, both PCSbem and PCSavc approach 1,

masking the differences between the two procedures. To eliminate this effect and

isolate the improvement with AVC, we simultaneously let the ratio of the differ-

ences between the populations approach 1 at the canonical rate of 1/vfvi, as shown

in (2.9).

2.5.2 BEM Estimators

Consider the asymptotic behavior of PCSber as the number of vectors, v, goes to

infinity. Our approach is structured around a result presented by Lehmann (1986,

pp. 478-479) which we state below as a lemma.

Lemma 2.1 (Asymptotic Distribution of Standardized BEM Estimators) Let Y

(Y'(v), Y 2 (v), .. , A (v)) be distributed as a multinomial random variable with pa-

rameters v and p = (pl(v),p 2 (v),.. .,pk(v)). Define pj(v) as in equation (2.9).
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Let

Y.(v) - v/k 1-,

Then as v -4 oc

Mk VN [ Il~1k(1 - I/k) -1/k(1/k) 
*. -1/k(1/k)

-~ K-1/k(1/k) -1/k(1/k) ... 1/k(1 - I/k)
Proof: See Lehimann (1986).

Lemma 2.1 is critical to proving the following theorem which we later use to

equate asymptotic PCSbem with asymptotic PCSavC.

Theorem 2.1 (Asymptotic PCSbm)

Let Y - (YI (v), Y2 (v), - . - ,E(v)) be distributed as a multrnomial random yari-

able with parameters v and p, (PI (V),P 2 (V), Apk(V)), with Pj defined as in

equation (2.9). Then

-bern k6PCs li Pr{Yi1(v) > 17,,(v)} Pr max Qt < (2.10)

where

Proof: See Appendix A.
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2.5.3 AVC Estimators

Consider the asymptotic behavior of PCS vc as the number of vectors, v, goes to

infinity. Our approach is structured around a result presented by Lehmann (1963,

pp. 964-965) and also in Randles and Wolfe (1979, p. 107). We state this result

below as Lemma 2.2.

We notice that our AVC estimator is a k-sample U-statistic, where p

(PI, P2,..., Pk) represents our parameter for the system success probabilities. From

Randles and Wolfe (1979, p. 104), we say p is estimable of degree (1,..., 1) for

distributions (F1 , . . . , Fk) in some family T, if (1, . . . , 1) are the smallest sample

sizes for which there exists an unbiased estimator of p for every (F 1,... , Fk) E Y.

Formally stated we have

E(F, . _Fk)[h~j)(Xjl I , XkI)] P

for j = 1,..., k and we define our k-sample symmetric kernel h(J)(.) as

k

h(j)= (X3 - (2.11)
f=l;f54j

So we have h (j )  1 if the observation from the jth system is the largest in any

vector comparison across all systems. Substituting our kernel from (2.11) into

(2.2) and dividing by vk, we have presented our Pj, j = 1, 2, ... , k as k-sample

U-statistics. We can then state the following lemma, where some of the notation

has been simplified to match the context of our problem.

Lemma 2.2 (Asymptotic Distribution of AVC Estimators) Let i,... Af be k-

sample (k > 1) U-statistics, with pi corresponding to a parameter Pi of degree

(1,..., 1) and symmetric kernel h(')(.), for i = 1,..., k. Let N = kv, where v is
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the sample size from each of k populations. Then the joint limiting distribution of

N 0 l/
'k (Pk - Pk) o \ /

where

k(ab 1 ) (2.12)
i=1

for Ai = liMN_ v/N. The quantities 4 a,b) are given by

- [Hi~) Hi2)] PaPb

where

H: I h t()xloi -y2a2,...,Xka)
H} (a h(b) (X 101, X 202, ... ,XkZ)

and the sets (al, O2 ,.... , Oi,..., Ok) and (31, /32, . . ., /3, .... /k) have only the i th

element in common, where the elements in each set represent positive integers and

a, b c f1, .. ., k}.

Proof: See Lehmann (1963).

Proceeding in much the same manner as we did in moving from Lemma 2.1 to

Theorem 2.1, we can define PCSavc as a probability statement involving a function

of k and the maximum of (k - 1) random variables created by subtracting one of

the standardized pjs from each of the remaining standardized pis, i : j. These

random variables are the Q2, Q3,.., Qk in the following theorem.
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Theorem 2.2 (Asymptotic PCSavc)

Let A,... ,Pk be k-sample (k > 1) U-statistics, with pi corresponding to a

parameter pi of degree (1,... , 1) and symmetric kernel h(')(.), for i = 1, ... , k.

Let N = kv, where v is the sample size from each of k populations. Let p(v) =

(pI (v),p 2 (v),. ,pk(v)), with pj(v) defined as in equation (2.9). Then under our

model with F ( ') --- + F

PCs =_ lir Pr{i~(v) > pj(v)} Pr max Q / 2/(k
v- -+Jaf=2k 0 2/(2k - 1) 3)

where

• -,MVN ",".
Qk 0 1/2 1

Proof: See Appendix A.

2.5.4 Combining BEM and AVC Results

-- + avc -- bem
Let PCS and PCS represent the asymptotic PCS for AVC and BEM respec-

tively, under the setup described in §2.5.2 and §2.5.3. Combining the results from

Equations (2.10) and (2.13) we have

) avc - bern
PCS > PCS

since

k av c  k bem

V2/(2k - 1) - 2k

for k > 2 with 6avc be' . Then we have

-- avc -- bem

PCS PCS (2.14)
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if and only if

k5
a v c  k 6bem

V2/(2k - 1) 2/k

Solving for avc we have

6
a vc = 6bem /k/(2k - 1). (2.15)

We use 6 bem and 0 ber (6 av and 0avC) to represent the difference, P[k] -P[k-1], or the

ratio, P[k]/P[k-1], respectively associated with BEM (AVC) calculations. Our goal is

to use the relationship between 6 av' and 6 bem to define a relationship between 0 avc

and 0 bem that also guarantees (2.14). This will allow us to use BEM calculations

to approximate AVC results.

Under the LFC for BEM, Equation (2.1), we have

0* 1
P[k] - P[k-1] - 0*+k-1 0*+k-

0* - 1

0* + k-i (2.16)

To relate this difference in Equation (2.16) to our asymptotic analysis, we define

the sample-size standardized difference as

lim V/\(p[k](v) - P[k-1](V)) (k - 1)6 - (-6)

k6. (2.17)

Since (2.16) and (2.17) represent the same difference, we set

H6 0* 1 (2.18)k5- * + k - 1 (.8

and solving for 0*

0* 1 + (k - 1)k6 (2.19)
1 - k
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Equations (2.18) and (2.19) define a relationship between a ratio and a differ-

ence. We can proceed from here, using Equations (2.15) through (2.19), to relate

0av, to pbem such that (2.14) holds. Summarizing the required steps we arrive at

the following algorithm.

Algorithm 2.1 (LSA for 0avC)

1. Express k5" in terms of 0ac using (2.18).

2. Rewrite k... from step 1 in terms of kabe r using (2.15).

3. Express 0bm in terms of kWbem from step 2 using (2.19).

Consider the following illustration. We have a problem with a specified

(0*, k, P*) where we want to find the minimum sample size required with AVC.

To approximate the required sample size, v, for AVC we have

av(O = 0*, k P*) Vbem(Obem , k, P*) (2.20)

where vae and vbe" denote the v required for AVC or BEM respectively.

We can make this approximation since

PCSbem (vbem(obem k, > P*

and from (2.14) we have

--+ avc - bem

PCs (ac, k) - PCS (pbem k),

which leads us to

PCs axv (Vbem(Obem, k, p*)) ". p*.
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Continuing with our example we step through Algorithm 2.1. At step 1 we

have
0ave - 1

0avc + k - 1

At step 2 we have

kibem - a(O avc - 1 2 k- 1
-k0v k1 k

Then at step 3 we have our LSA for Qav,

1 + (k -1) ( 0 .1 k-
obem +k-1 j _k (2.21)

- ( avc k-I

It will always be the case that 0 bern > 0*.

If we want to estimate an equivalent 0a,, for 0 bm = 0*, we make the following

approximation,

Vbe (Obem k, P*) Vavc(0 aC, k, P*), (2.22)

using the same reasoning as for (2.20). Proceeding as in Algorithm 2.1, we start

by expressing 6 be' in terms of 6avc and end up writing 0avc in terms of k a'a to

obtain

oavc 1 ± (k-) (Obem+- k- (2.23)
0 (bem- 2223

It will always be the case that Oavc < 0*. This form of the approximation has little

practical use. However, it does reflect another benefit of AVC in terms of a smaller

0, indicating the ability of AVC to discriminate smaller differences between the best

and the next best system with the same value of v as BEM for 0*. This advantage

becomes important in a case where we need to detect as small a difference as

possible with a fixed number of vector replications.
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We provide conversions using both of these approximations for some common

values of 0* in Table 2.1 and present simulation results testing the robustness of

the approximations in §2.7.

0 bem = 0* 0av = 0*

k 0* 0avc 0 bem

2 1.2 1.1604 1.2506
2.0 1.7479 2.3798

3 1.2 1.1526 1.2633
2.0 1.7205 2.4297

4 1.2 1.1494 1.2689
2.0 1.7124 2.4390

5 1.2 1.1476 1.2720
2.0 1.7092 2.4400

10 1.2 1.1443 1.2778
2.0 1.7061 2.4326

Table 2.1: Equivalent 0 Values using LSA

2.6 Empirical Results

In order to allow easy comparison with available BEM results, we selected pop-

ulation distributions for our simulations that allowed us to control the value of

0*. These distributions are the exponential, continuous uniform, and the Bernoulli

presented in §2.4. In addition, to consider a less peaked continuous distribution

without the restricted range of the continuous uniform, we looked at a set of gamma

distributions with shape parameter a = 3.

As in our analytical results, we consider population distributions that belong

to the same parametric family. We arbitrarily select 7r, as the best population and
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0
k 1.2 2.0
2 1.2000 2.0000
3 1.1589 1.7808
4 1.1368 1.6632
5 1.1227 1.5885

Table 2.2: Exponential: Values of p in LFC with A 1

the remaining populations are identically distributed. Let Xj represent a random

observation from r; j = 1, 2,..., k. We have

Pr{Best Population Wins} = Pr{Xi > max(X 2,... , Xk)}.

We then define

0 Pr{Xi > max(X 2,..., Xk)}
(1 - Pr{X1 > max(X 2 ,. . . , Xk)}) /(k- 1)"

By setting 0 = 0*, we can then fix one or more parameters for one of the distribu-

tions and solve for the remaining parameter to carry out our simulations at a given

0". Tables 2.2-2.5 list parameters for 0 = 1.2 and 0 = 2.0 with k = 2, 3,..., 5 for

each of our four distributions.

Our simulation consists of the following steps.

1. Model all systems using the same distribution family, with system 1 arbi-

trarily the best, and all remaining systems identically distributed such that

0 = 0*. Initialize PCSbem and PCSavc to 0 and set v = 2.

2. Generate a set of v random vector replications, where each replication con-

tains one observation for each of the k systems.
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0

k 1.2 2.0
2 1.1021 1.4442
3 1.0855 1.3751
4 1.0760 1.3340

5 1.0698 1.3061

Table 2.3: Gamma: Values of 0 in LFC with a, =o 3, 0 1

0
k 1.2 2.0
2 1.1000 1.5000

3 1.0667 1.3333
4 1.0500 1.2500
5 1.0400 1.2000

Table 2.4: Continuous Uniform: Values of B in LFC with A

0
k 1.2 2.0
2 0.4091 0.1667
3 0.4208 0.2192
4 0.4250 0.2426
5 0.4264 0.2545

Table 2.5: Bernoulli: Values of po in LFC with p, .5
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3. For BEM, group the observations across systems by vector replication and

count up the number of wins for each system. These are our Y., j

1,2,...,k.

4. For AVC, form the vk pseudo-replications from the v vector replications and

count the number of wins for each system. These are our Zj, j = 1, 2, ... , k.

5. If Y (BEM count associated with the best system) is larger than K), j

2, 3,..., k, increase PCSbem by 1. If Y' ties for the largest count with t other

systems, t = 1, 2,.... , k - 1, increase PCSbem by 1/(t + 1). If I < I§, for any

j, j = 2, 3,... , k, do not increase PCSber .

6. If Z1 (AVC count associated with the best system) is larger than Zj, j -

2, 3,... , k, increase PCS vc by 1. If Z1 ties for the largest count with t other

systems, t 1, 2,..., k - 1, increase PCSav e by 1/(t + 1). If Z1 < Zj, for any

j, j = 2, 3,.. ., k, do not increase PCSVC.

7. Repeat steps 2-6 for M macro-replications. Compute PCSber = pCSbem/M

and PCSv = PCSav'/M.

8. Increase v and repeat steps 2-7.

Using parameter values from Tables 2.2-2.5, we estimated PCSbem and PCSv

using the simulation described above for k 2, 3,..., 5 populations out to v = 50

vectors for each of the three continuous distributions at 0 = 1.2 and 2.0. Results

were also obtained for k = 10 for exponential populations. Due to limited com-

puter time, Bernoulli distributions were only simulated for k = 2 and 3 populations

at 0 = 1.2. All simulation results are for M = 100, 000 macro-replications using a
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separate random number stream for each population, but common random num-

bers across distributions. Since the exponential and uniform random variates each

require a single random number, results for these distributions have synchronized

random variates for all of the data generated. This is not the case for the gamma

random variates since an acceptance-rejection method was used (Law and Kelton

1991). The Bernoulli random variates are synchronized; however, because of the

possibility of ties among the systems within a vector replication, an additional

random number stream is used a random number of times to break the ties for the

PCS calculations. Standard errors for the PCS values are on the order of 0.0015.

More complete results are available in Appendix B.

Table 2.6 list results for each of our distributions out to v = 50 vectors for

k = 2 populations at 0 = 1.2. The PCSbem column is from simulations using

exponential populations. The difference in the PCSvc values among the continuous

distributions is generally found in the third decimal place. However, we see a

more significant difference between the Bernoulli PCSvc and any of the continuous

Pcsavc values. Figure 2.4 demonstrates the distributional dependence of PCS'vc

for exponential and Bernoulli populations. We also notice significant improvement

in Table 2.6 with PCSvc over PCSbem for all of the distributions. Figure 2.5

illustrates the improvement with PCSvc over PCSbem for k = 2 to 5 exponential

populations. Looking closely at Figure 2.5, the spread between PCS~vc and PCSbem

appears to be increasing slightly as k increases. This is most readily apparent when

comparing the k = 2 results to the k = 3 results. It is also apparent from both
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PCSave

v P5CS em  Exponential Uniform Gamma Bernoulli
2 0.5430 0.5532 0.5579 0.5532 0.5565
3 0.5641 0.5667 0.5712 0.5667 0.5790
4 0.5656 0.5779 0.5821 0.5762 0.5919
5 0.5826 0.5873 0.5913 0.5853 0.6037
6 0.5835 0.5950 0.5990 0.5940 0.6148
7 0.5971 0.6032 0.6074 0.6019 0.6251
8 0.5973 0.6101 0.6140 0.6098 0.6356
9 0.6102 0.6172 0.6201 0.6164 0.6437
10 0.6099 0.6232 0.6261 0.6238 0.6513
11 0.6190 0.6297 0.6317 0.6295 0.6586
12 0.6193 0.6351 0.6364 0.6351 0.6660
13 0.6287 0.6406 0.6422 0.6409 0.6726
14 0.6290 0.6463 0.6470 0.6460 0.6781
15 0.6372 0.6507 0.6523 0.6518 0.6856
16 0.6380 0.6553 0.6563 0.6564 0.6900
17 0.6460 0.6598 0.6611 0.6612 0.6970
18 0.6462 0.6638 0.6653 0.6662 0.7034
19 0.6548 0.6681 0.6700 0.6700 0.7085
20 0.6541 0.6730 0.6744 0.6731 0.7132
21 0.6620 0.6773 0.6780 0.6776 0.7180
22 0.6624 0.6812 0.6822 0.6813 0.7223
23 0.6705 0.6848 0.6862 0.6851 0.7275
24 0.6695 0.6880 0.6902 0.6888 0.7320
25 0.6760 0.6915 0.6940 0.6924 0.7363
26 0.6757 0.6950 0.6976 0.6957 0.7407
27 0.6818 0.6992 0.7011 0.6995 0.7454
28 0.6818 0.7020 0.7043 0.7030 0.7502
29 0.6882 0.7049 0.7073 0.7055 0.7548
30 0.6882 0.7078 0.7104 0.7088 0.7576
31 0.6935 0.7110 0.7138 0.7117 0.7613
32 0.6940 0.7145 0.7171 0.7144 0.7642
33 0.6992 0.7176 0.7199 0.7175 0.7675
34 0.6987 0.7206 0.7228 0.7200 0.7716
35 0.7049 0.7235 0.7257 0.7233 0.7746
36 0.7044 0.7261 0.7288 0.7258 0.7785
37 0.7096 0.7295 0.7314 0.7284 0.7818
38 0.7094 0.7324 0.7346 0.7314 0.7853
39 0.7140 0.7352 0.7377 0.7344 0.7880
40 0.7138 0.7378 0.7403 0.7374 0.7907
41 0.7195 0.7406 0.7433 0.7401 0.7928
42 0.7198 0.7427 0.7460 0.7429 0.7955
43 0.7246 0.7455 0.7483 0.7457 0.7988
44 0.7241 0.7479 0.7508 0.7480 0.8015
45 0.7282 0.7503 0.7528 0.7506 0.8040
46 0.7279 0.7528 0.7549 0.7529 0.8073
47 0.7319 0.7550 0.7570 0.7551 0.8098
48 0.7319 0.7567 0.7595 0.7572 0.8121
49 0.7357 0.7591 0.7618 0.7591 0.8155
50 0.7362 0.7614 0.7638 0.7612 0.8179

Table 2.6: PCS Results for k = 2 Populations with 0 1.2
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Figures 2.4 and 2.5 that the spread between the PCSvc and PCSbe r values widens

as v increases. However, we know that as v approaches infinity both PCSvc and

PCSber approach 1, so this spread will eventually go to zero.

These results clearly show an improvement in PCS with AVC for all values

of k and v considered, and also illustrate the weak dependence of PCSvc on the

underlying population distributions.

2.7 Robustness of LSA

To check the accuracy of our LSA approximation, we performed a simulation study.

The study covers a range of values for P* (.75, .90, and .95) and 0* (1.2 and 2.0)

with exponential, continuous uniform and gamma distributions for k - 2, 3,..., 5
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populations and Bernoulli distributions for k = 2, 3. For the exponential and

continuous uniform distributions, results are also presented for k = 10 at 0* = 2.0.

Results are not available for all distributions at 0* = 1.2 for k > 2. This is due

to the significant amount of computing time required to obtain these results due

to the much larger number of replications required than for 0* = 2.0. We have

included all results available for 0* = 1.2 in Tables 2.7 and 2.9.

We first consider the approximation in (2.20) and perform the following steps.

1. Select a k and Q* and set 0 av. = 0,. This indicates that we are interested in

calculating AVC results at 0*.

2. Solve for 0 bem using Equation (2.21).
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3. The calculated value of 0 bem will not be in a standard BEM table. Use

FORTRAN code developed by Goldsman (1995) to find vbem (Ob", k, P*) for

P* = .75, .90, .95. Denote these values as vbem(. 7 5), Vbem(. 9 0), and vbem (.9 5),

respectively.

4. Perform simulation runs to estimate PCSv values at k and 0a = 0* when

using the vbem values from step 3. We are looking for the following:

PCa rc (vben(.75); (0avc, k)) - .75

PCsavc (Vbem(.90); (oave, k)) ,z .90

PCsavc (vbem(.95); (Oavc, k)) .95.

Values estimated in step 4 above are reported in Tables 2.7 and 2.8. If our LSA

is good, all PCSav values in Tables 2.7 and 2.8 should be close to the P* listed at

the top of the column in which they appear. The table values include the PCSavc

value and the associated standard error in parentheses. All simulation runs use

the model described in §2.6 and are based on M=100,000 macro-replications for

the three values of v found in step 3 above.

To illustrate how this approximation works for a numerical example, say

we want to find vavc(Oavc = 1.2, k = 3, P* = .90). Using (2.21) we obtain

0 bem = 1.2633, and using FORTRAN code developed by Goldsman (1995), we find

vbem(Ob'em = 1.2633, k =3, P* = .90) = 264. To show how good an approximation

this provides for our specified vcv', we simulate M 100, 000 macro-replications

each containing 264 vector replications using 0avc = 1.2 with exponential popu-

lations, and obtain PC-Sv .8997 with a standard error of 0.0009. So here our

LSA is very good. These results are included in Table 2.7, where we see that the
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k 0 bem Distribution P* = .75 P* = .90 P* = .95
2 1.2506 Exponential .7502 (.0014) .9012 (.0009) .9510 (.0007)
2 1.2506 Gamma .7481 (.0014) .8994 (.0010) .9493 (.0007)
2 1.2506 Uniform .7499 (.0014) .9010 (.0009) .9506 (.0007)
2 1.2506 Bernoulli .7856 (.0013) .9318 (.0008) .9723 (.0005)
3 1.2633 Exponential .7470 (.0014) .8997 (.0009) .9490 (.0007)
3 1.2633 Gamma .7446 (.0014) .8994 (.0010) .9482 (.0007)
3 1.2633 Uniform .7474 (.0014) .8989 (.0010) .9481 (.0007)
4 1.2689 Exponential .7469 (.0014) .8964 (.0010) .9485 (.0007)
4 1.2689 Gamma .7462 (.0014) .8984 (.0010) .9489 (.0007)
4 1.2689 Uniform .7469 (.0014) .8948 (.0010) .9467 (.0007)

Table 2.7: PCS Achieved for 0avc = 0* = 1.2 Using LSA

k 0 bem Distribution P* = .75 P* = .90 P* = .95
2 2.3798 Exponential .7614 (.0013) .8914 (.0010) .9450 (.0007)
2 2.3798 Gamma .7608 (.0013) .8924 (.0010) .9456 (.0007)
2 2.3798 Uniform .7625 (.0013) .8889 (.0010) .9426 (.0007)
2 2.3798 Bernoulli .7673 (.0013) .9380 (.0008) .9773 (.0005)
3 2.4297 Exponential .7390 (.0014) .8909 (.0010) .9426 (.0007)
3 2.4297 Gamma .7380 (.0014) .8910 (.0010) .9440 (.0007)
3 2.4297 Uniform .7391 (.0014) .8873 (.0010) .9391 (.0007)
3 2.4297 Bernoulli .7833 (.0013) .9279 (.0008) .9687 (.0007)
4 2.4390 Exponential .7461 (.0014) .8911 (.0010) .9464 (.0007)
4 2.4390 Gamma .7457 (.0014) .8929 (.0010) .9391 (.0008)
4 2.4390 Uniform .7446 (.0014) .8858 (.0010) .9409 (.0007)
5 2.4400 Exponential .7485 (.0014) .8910 (.0010) .9443 (.0007)
5 2.4400 Gamma .7473 (.0014) .8940 (.0010) .9454 (.0007)
5 2.4400 Uniform .7454 (.0014) .8824 (.0010) .9372 (.0007)

Table 2.8: PCS Achieved for 0avc = 0* = 2.0 Using LSA
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results for all the distributions achieve the desired P* to the second decimal place

in almost all cases. In fact, we note that the Bernoulli results are significantly

larger than P* in many cases. The cases where we see more of a departure from

P* are for smaller values of P* where v is typically less than 30.

We also notice that vbem(Ob'em = 1.2, k = 3, P* = .90) = 437 (Bechhofer,Santner,

and Goldsman 1995). Comparing this with our approximate vavC(Oavc = 1.2, k =

3, P* = .90) = 264, we see a nearly 40% reduction in the number of replications

required with AVC.

To be complete we consider using the approximation in (2.22) and perform the

following steps.

1. Select a k and 0* and set 0 b, = 0". This indicates that we are interested in

using BEM results at 0*.

2. Solve for Oa'vc using Equation (2.23).

3. Go to standard BEM tables, such as Table 8.1 in Bechhofer, Santner,

and Goldsman (1995), and read off values for vbem(Obem, k, P*) for P* =

.75, .90, .95. Denote these values as vbem (.7 5 ), vbm(. 9 0), and Vb,,m(.95) re-

spectively.

4. Perform simulation runs to obtain PCSavc values at k and 0avc from step 2

when using the vbern values from step 3. We are looking for the following:

PCSavc (vben(.75); (0avc, k)) .75

PCs v Ve.9; (oave , k)) .90
PCSI vc (vbern(.95); (oavc, k)) .95.
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Values estimated in step 4 above are reported in Tables 2.9 and 2.10. The table

values include the PCSvc value and the associated standard error in parentheses.

All simulation runs use the model described in §2.6 and are based on M=100,000

macro-replications for the three values of v found in step 3 above.

Following our previous numerical illustration, suppose we want to find

V bem(bem -= 1.2,k = 3,P* = .90). Using (2.23) we obtain 0ac = 1.1526. We

go to a standard BEM table, to find our specified vbe, = 437. As we did above, we

test the robustness of our approximation by simulating 100,000 macro-replications

each containing 437 vector replications using 0a = 1.1526 with exponential pop-

ulations, and obtain PCSve = .8991 with a standard error of 0.0010. Once again

our LSA is very good. These results are presented with similar results for our other

selected distributions in Tables 2.9 and 2.10.

The benefit from this form of the LSA is reflected by 0a"c < 0*. This indicates

that AVC can provide better discrimination between the systems at the same level

of confidence and with the same data.

2.8 Conclusions

When trying to pick the best system out of k systems, there are many instances

when this selection should be based on one-time performance rather than long-run

average performance. Multinomial selection procedures provide a framework for

defining such a problem, and Procedure BEM is the classical approach for solving

it. Procedure AVC is an alternative approach designed to obtain a higher PCS

by performing all possible comparisons across all systems for a given set of system
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k Oavc Distribution P* = .75 P* = .90 P* = .95
2 1.1604 Exponential .7486 (.0014) .8998 (.0009) .9500 (.0007)
2 1.1604 Gamma .7493 (.0014) .9008 (.0009) .9495 (.0007)
2 1.1604 Uniform .7505 (.0013) .9011 (.0009) .9500 (.0007)
3 1.1526 Exponential .7514 (.0014) .8991 (.0010) .9500 (.0007)
3 1.1526 Gamma .7502 (.0014) .8997 (.0010) .9500 (.0007)
3 1.1526 Uniform .7510 (.0013) .8983 (.0009) .9493 (.0007)
4 1.1494 Exponential .7504 (.0014) .8998 (.0010) .9501 (.0007)
4 1.1494 Gamma .7520 (.0014) .9002 (.0009) .9509 (.0007)
4 1.1494 Uniform .7499 (.0014) .8975 (.0010) .9489 (.0007)

Table 2.9: PCS Achieved for 0 bm = 0* = 1.2 Using LSA

k Oavc Distribution P* = .75 P* = .90 P* = .95
2 1.7479 Exponential .7692 (.0013) .9021 (.0009) .9471 (.0007)
2 1.7479 Gamma .7702 (.0013) .9037 (.0009) .9477 (.0007)
2 1.7479 Uniform .7703 (.0013) .9013 (.0009) .9453 (.0007)
2 1.7479 Bernoulli .7950 (.0013) .9373 (.0008) .9726 (.0005)
3 1.7205 Exponential .7471 (.0014) .8971 (.0010) .9460 (.0007)
3 1.7205 Gamma .7456 (.0013) .8975 (.0009) .9464 (.0007)
3 1.7205 Uniform .7459 (.0014) .8933 (.0010) .9432 (.0007)
3 1.7205 Bernoulli .7911 (.0013) .9332 (.0008) .9701 (.0005)
4 1.7124 Exponential .7419 (.0014) .8944 (.0010) .9461 (.0007)
4 1.7124 Gamma .7418 (.0014) .8956 (.0010) .9464 (.0007)
4 1.7124 Uniform .7403 (.0014) .8888 (.0010) .9414 (.0007)
5 1.7092 Exponential .7458 (.0014) .8950 (.0010) .9474 (.0007)
5 1.7092 Gamma .7452 (.0014) .8976 (.0010) .9478 (.0007)
5 1.7092 Uniform .7412 (.0014) .8881 (.0010) .9410 (.0007)

10 1.7061 Exponential .7576 (.0014) .9024 (.0009) .9516 (.0007)
10 1.7061 Uniform .7476 (.0014) .8891 (.0009) .9411 (.0007)

Table 2.10: PCS Achieved for 0bm = 0* = 2.0 Using LSA
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performance data. Construction of Procedure AVC closely follows that of BEM,

allowing researchers to easily move from a standard approach to our new approach.

p*

k 0* .75 .90 .95
1.01 12171 (18371) * *

1.05 509 (765) 1839 (2759) 3027 (4545)
2 1.10 133 (201) 483 (723) 793 (1191)

1.20 37 (55) 133 (199) 217 (327)
2.00 3 (5) 9 (15) 15 (23)
1.05 1544 (2565) 3741(6211) 5526(9165)

3 1.10 401 (666) 972 (1615) 1436 (2385)
1.20 108 (181) 264 (437) 388 (645)
2.00 7 (12) 17 (29) 25 (42)

4 1.20 187 (326) 398 (692) 565 (979)
2.00 12 (20) 25 (43) 36 (61)

5 1.20 271 (486) 541 (964) 748 (1331)
2.00 17 (29) 33 (58) 46 (81)

Table 2.11: Minimum Number of Vectors to Achieve P* for AVC (BEM)

From the simulation design point of view, AVC can also be used to our advan-

tage by allowing us to plan a smaller number of replications to achieve a desired

PCS, P*. Table 2.8 presents comparisons of the minimum number of independent

replications needed to achieve a given P* for AVC and BEM. Values for BEM

are taken from Bechhofer, Santner, and Goldsman (1995). The AVC values are

obtained using our LSA in (2.21) with 0av = 0* to find 0 ber and then running

an exact code for PCSbem provided by Goldsman (1995) at 0 = 0bn . An asterik

indicates that runs were not accomplished due to the large number of replications
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(> 40, 000) required. As k increases, we see a more dramatic reduction in the

number of vector observations needed with AVC to achieve the same P*. So the

advantages of AVC over BEM appear greater for more challenging MSPs.
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CHAPTER 3

POINT ESTIMATION FOR MULTINOMIAL
SUCCESS PROBABILITIES

3.1 Introduction

Suppose we have k > 2 independent populations, denoted 7 1, 7F2, ... ,k. In a

simulation context each population is a simulated system. We consider the problem

of estimating the probabilities associated with each system being the best system

in a single comparison (trial) of simulated results for all of the systems.

Let Xyi represent the ith replication from system j of some performance mea-

sure. Each system (7rj, j 1, ... , k) has an unknown constant probability (pi, j -

1,... , k) of having the largest value of the performance measure in any replication

containing one observation from each system. We define the best system as the

system most likely to have the largest performance measure (i.e., it wins) in any

comparison across all systems. Such a comparison corresponds to a multinomial

trial, where one and only one system can win in any given trial and the numbers

of wins for the individual systems in v independent trials follows a multinomial
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distribution. Our objective is to provide estimates for the unknown multinomial

success probabilites, pj, j = 1, . .. , k.

Applications where a multinomial distribution is appropriate include selecting

the best of a set of tactical or strategic military actions, where best means the max-

imum damage in a single strike. An example in the area of structural engineering

is finding the design that performs best in a one-time catastrophic event, such as

an earthquake. Simulation examples include selecting the schedule most likely to

result in completing all jobs on time; selecting the investment portfolio most likely

to provide the largest return; or selecting the computer system with the highest

probability of completing a series of tasks without failure. Each of these appli-

cations involves the comparison of quantitative measures of performance among

competing systems as opposed to comparing qualitative measures. For the type of

application considered in this study, we require a quantitative measure of system

performance for each system on each trial to be compared with the performance

of other systems across any or all of the remaining trials.

Let Xi = (X 1 i, X 2i, .... ,Xki) represent the zth replication across all k systems.

Let Yji = 1 ifXji > Xtj, for f = 1, 2,..., k, but f 5 j; and let YIi = 0 otherwise. In

other words, Yji = 1 if -ji is the largest observation in Xi. In case of a tie for the

largest value, we randomly select one of the tied populations as the best. Suppose

that there are v independent replications across all systems, and let Y1 = Fv A"

represent the number of times system j wins out of these v replications. Let

pj= Pr{Xji > X&j, Vft7j} where 0 < pj < l and Ej=k pj 1. Then k
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and the k-variate discrete random variable Y = (I , I..... ,Y.) follows a multino-

mial distribution with v trials and success probabilities p = (pl,p2,... ,Pk). The

probability mass function for Y with parameters v and p is

VI kPj = YI, Y2= Y, Ik= Yk) = IIk PJ•
1 -j=l Yj* j=l

One set of point estimators for the multinomial success probabilities are the max-

imum likelihood estimates (MLEs) given by )3j = Yj/v, j = 1, 2,... , k.

Closely related to the estimation of the pjs is the problem of determining which

of the systems has the largest probability of being the best system. This is known

as the multinomial selection problem (MSP). The classical solution procedure for

the MSP, Procedure BEM (Bechhofer, Elmaghraby, and Morse 1959), uses the

multinomial cell counts, Y, to select the best system. Some of the concepts and

terminology used in the MSP carry over to our point estimation problem.

Due to convention and convenience when comparing simulated system re-

sponses, the responses are typically grouped by replication, corresponding to a

trial in a physical experiment. Grouping system responses in this fashion is ar-

bitrary and since our simulated responses are quantitative, we can compare any

observation from one system with any observation from each of the remaining sys-

tems. This means that a single observation from system 1 can be grouped in a

vector comparison with any one of the v observations from system 2, and with any

one of the v observations from system 3, and so on, up to and including any one

of the v observations from system k. Since there are v observations from system 1

as well, this gives us a total of vk vector comparisons (trials) that can be formed

with v independent observations from each of the k systems. We incorporate this
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setup, which we call AVC for All Vector Comparisons, to construct new point es-

timators for the pjs. Our estimators turn out to be k-sample U-statistics (Randles

and Wolfe 1979). By arbitrarily performing only the v vector comparisons where

the observations for each system are from the same replication, we disregard the

information available from the remaining v k - v comparisons.

Our results suggest some advantages of AVC estimators over the standard

MLEs. First, we prove that the variance of the AVC estimators is no larger than

the variance of the MLEs. For specific small-sample examples we demonstrate the

magnitude of the variance reduction with AVC estimators for a fixed v. We show

this analytically for small values of v and k. We also show that the variance re-

duction depends weakly on the distributions of the system performance measures.

This fact, along with the difficulty of analytically evaluating the exact variance for

AVC estimators for even small k and v, led us to a consider using the asymptotic

variance as an approximation to the exact variance. An estimate of the asymptotic

variance is used to form confidence intervals.

This paper is organized as follows: We first briefly address the MSP and intro-

duce terminology used in our point estimation problem. We then present the MLEs

and the associated variances for the pjs. Then we describe our new approach, AVC,

which represents our point estimators as k-sample U-statistics. We present a proof

for a variance reduction with AVC along with analytical results showing the mag-

nitude of the variance reduction for small k and v covering different population

distributions for the performance measures. Our asymptotic approximation for the

variances of the AVC estimators is then presented. Empirical results follow and

include the construction of confidence intervals.
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3.2 Background

Because of the close relationship between the MSP and the estimation of multino-

mial success probabilities, we briefly address a classical solution procedure for the

MSP and define some terminology we will be using throughout our discussion.

Bechhofer, Elmaghraby and Morse (1959) describe a single-stage procedure,

Procedure BEM, for selecting the multinomial event (population or system) which

has the largest success probability. Procedure BEM requires the specification of

P* (where 1/k < P* < 1), a minimum probability of correctly identifying the

population with the largest success probability (i.e., the best population), and 0*

(where 1 < 0* < oc), the minimum ratio of the largest success probability to

the second largest success probability that we want to be able to detect. The

probability of correct selection (PCS) is a property of the selection procedure and

provides no information about the values of the pjs. The procedure, as adapted to

simulation, consists of the following steps:

Procedure 3.1 (BEM)

1. For given k and 0*, find the minimum value of v, denoted as v*, that guar-

antees that the PCS is at least P*.

2. Generate v* independent replications for each population.

3. Compute Y. ._ Y l j, forj 1,2,...,k.
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4. Let Yi) < 1 () < . .. < Yk) be the ranked sample counts from step 3. Select

the population associated with the largest count, Ik), as the best population.

In case of a tie for the largest count, randomly select one of the tied popula-

tions as the best.

To determine the appropriate v* in step 1, let P[i] _ P[2] _ " _ P[k] denote the

ranked success probabilities for the k populations. Since only values of the ratio

0 - p[k]//p[k-l] greater than or equal to 0* are of interest, we are indifferent between

the best and the next-best population for values of 0 < 0*. A procedure of this

type is referred to as an indifference-zone approach. Select v* as the minimum

number of independent vector observations required to achieve a PCS greater than

or equal to P* whenever 0 > 0*.

We define the least favorable configuration (LFC) of p = (P[1],P[2],... ,P) as

the configuration where PCS is a minimum over all configurations with 0 > 0*

(Gibbons, Olkin, and Sobel 1977). If we obtain a PCS > P* with our selected v*

under the LFC, then a PCS of at least P* can be guaranteed for any configuration

of p with 0 > 0". Keston and Morse (1959) prove that the LFC for BEM is given

by

1

0*
P[k= 0* + k -I

A well known set of estimators for our multinomial success probabilities are the

MLEs given by
Ij (3.1)

V
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which represent the fraction of wins out of v replications for population j, j

1, ... , k. It is well known that E[j3j] = pj and

Var() =pj( -pj) (3.2)

V

3.3 AVC Estimators

We propose a method to provide point estimators for the multinomial success

probabilities with smaller variances than the corresponding MLEs using the same

replications X, i = 1, 2, . . ., v. Rather than comparing the ith replication for each

system with the ith replications of the other systems, consider a total of vk pseudo-

replications formed by associating each Xjj (j = 1, 2, ... , k; i 1, 2,... ,v), with

all possible combinations of the remaining Xth (f 1, 2, . .k; j; h =

1, 2,..., v). Each such pseudo-replication contains one observation from each pop-

ulation. Notice that the vk pseudo-replications include the v independent replica-

tions from which the pseudo-replications are formed.

Define
v v v k

Z3  : I .- 1 fI q(Xja - Xfat) (3.3)
al=1a2=1 ak=l f=l;e 4j

for j =1, 2,.. .,k with

1, a>O

¢(a) = 0, a < 0
randomly assign

0orn, a=0.

Thus, Zj represents the number of times out of vk pseudo-replications that popu-

lation irj wins (ties broken randomly) and jZjZ v .
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As a specific illustration of how these pseudo-replications are formed, consider

k = 3 systems with two observations generated for each. Our original replications

and counts (Y., j = 1, 2, 3) are then

X 11  X 21  X 31

X12 X 2 2  X 3 2

Y1  Y2  113

We will have a total of vk (23 = 8) pseudo-replications including our two original

replications when using AVC. These pseudo-replications and the associated counts

(Zj, j = 1, 2, 3) for each system are

XII X21 X31

X 1  X 21  X 32
X 1 1 X 2 2  X 3 1

X 11  X 22  X 32

X 12  X 21  X 3 1

X 12  X 21  X 32

X 12  X 2 2  X 3 1

X 12  X 22  X 32

Z1  Z2  Z3

Our new point estimators are then

- zi (3.4)

which represent the fraction of wins out of vk pseudo-replications for population

j. We refer to these estimators in (3.4) as AVC estimators, or to P = (Pl, ... ,Pk)

collectively as our AVC estimator. Clearly E[Pi] = pj, but the Var(Qi) is more

complex to calculate than Var(1j3). To find the variances for the individual pjs, we

represent our AVC estimator as a k-sample U-statistic, where p = (PI,P 2 , .. . ,Pk)

represents our parameters for the system success probabilities and Xj - Fj. From

Randles and Wolfe (1979, p. 104), we say p is estimable of degree (1,..., 1) for
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distributions (FI,..., Fk) in some family )7, if (1,..., 1) are the smallest sample

sizes from across all systems or populations for which there exists an unbiased

estimator of p for every (F 1,.. . , Fk) C F. Formally stated we have

E(F1 ..... F.)[h(J)(Xnj,... ,Xkl)] =Pi

for j 1,..., k where we define our k-sample symmetric kernel h(j)(-) as
k

h(J) = 1 (xi - Xte). (3.5)
f-=--;fT~j

So we have h(j ) = I if the observation from the jth system is the largest in any vector

comparison across all systems. Substituting our kernel from (3.5) into (3.3) and

dividing by vk, we have presented our pj, j = 1, 2,. . ., k as k-sample U-statistics.

Using well-known results for U-statistics (Randles and Wolfe 1979), we develop

the variance of a 2-sample U-statistic in general. First we have

E(F,F) [h(Xli, X2i)] = p.

Then the covariance terms are

1,o = Cov[h(Xi.,,X 2a2 ), h(Xla1,X 202)]

= E[h(XlaIX 2 2 )h(Xlai,X 2 2 )] P2

601 = Cov[h(X1 l,X2 2 ), h(XO,X 2 -i2 )]

= E[h(XloQ,,X 2,2 )h(Xi1 51,X 2. 2 )] - p 2

1,1 = Cov [h(X 1 ,-l, X2. 2 ), h(X 1 1 , X2a2)]

= E [h(Xoi, X2a2)h(Xi.,, X 2- 2)] - P2

where ai : /3i and o,o = 0. In our specific context, suppose we want to estimate

Pi = Pr{X, > X2}. We use our kernel from equation (3.5) for h(l)(.) and define

1,o Pr{Xla1 > X21 2; X 1c1 > X 202}-p 2  (3.6)

58



O,, = Pr{X., > X 20 2 ; X1 0 > X 2 a2 }- 1 (3.7)

1, = Pr{Xl > X 2 a2;Xiai > X 21 2}-p (3.8)

where a,, a2, /i, /12 C {1,...,v}.

Then using a general equation for the variance of a 2-sample U-statistic, we

can express the variance of our estimators as
Var!1j = 1 1 ( v- 1\ v- 1'
Va P=0dI=0 V I -- V- c di j=l,...,k. (3.9)

3.4 Analytical Results

The following analytical study illustrates a number of important properties of our

AVC estimator. First, we provide a general proof that the variance of our AVC

estimator is no larger than the variance of the MLE. Then we quantify this variance

reduction with AVC for specific cases. We also show that the variance reduction of

AVC relative to MLE depends weakly on the underlying distribution for the X3 j.

In addition we demonstrate the difficulty in obtaining analytical results for even

a small number of populations and observations, and thus provide motivation for

our asymptotic variance approximation.

3.4.1 Smaller Variance of the AVC Estimator

To show that AVC provides a point estimator with a smaller variance than MLE,

suppose we have simulation results for k systems with v observations from each

system as shown.
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X 11  X21 Xk1

X 12  X22 Xk2

X 1, X 2 , "'" Xkv

F F2  ... Fk

Let F1, F2,. .. ,/k represent the empirical cumulative distribution function (cdf)

for each population and suppose we wish to estimate Pl. Our MLE point estimator

is then

'i
V

with variance
Var ( 1) = A ( PI).

V

To arrive at our AVC estimator let

P1 (F) = Pr{Xli. > Xji., Vj =A 1, i=1,...Vk IF,,/P2,..,/k}

where i* represents the number of the pseudo-replication and pi(F) is the proba-

bility system i is the best when the data are distributed as F1, F2 ,.. ., Fk. Under

F1, F2,... , Fk, each pseudo-replication occurs with an equal probability of 1/vk.

We can then write

P (F) = (the number of pseudo-replications where population 1 wins)

vk

implying that the numerator is Z1 from (3.3). Therefore, we can define our AVC

estimator as

Pli = p(F)-
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Using standard definitions for conditional expectation and variance (Casella

and Berger 1990, p. 158) we know

Varopl) = Var[EOjj(plj,P F..,.., k)] -E[VaFO~jpl[j,P2, •
.. • k)]

= Var[pi(F)] + E[Var(51 IF1, F 2,...,k)]

= Var[P51] + E[Var(#,JP1, P2, ... ,FPk)].

Since E[Var(j IPIF,/ 2 ,. .. , !k)] > 0, we have shown that

Var(pi) < Var(oj).

In the following section we quantify the size of this reduction in the AVC estimator

variance for specific cases.

3.4.2 Small-Sample Results

We restrict our attention to continuous distributions for the Xjis, which eliminates

the possibility of ties among the observations. We let ir[k] be the best popula-

tion and assume all the remaining populations, 7r[l],.. ., 7l[k-1] are identically dis-

tributed. This setup gives us the LFC for BEM. We also consider all population

distributions to belong to the same parametric family. For illustrative purposes,

let X represent an observation from lr[kj and let 0 represent an observation from

any of the remaining inferior populations.

First, consider X - exp(A) and 0 , exp(/) and let A <ft, where A > 0 and

p> 0 are exponential rates. This particular example was suggested by Goldsman

(1995) in some early discussions concerning this research. For k = 2 and v = 2,
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we have P[2] Pr {X > 0} =,/(A + p.) and P[i] Pr{X < } A/(A + A) We.

arbitrarily let k be the best population so Pk = P[kl. From (3.2) we have

Ap
Var( 2(A +t)2

To find Var(52), we must first find the covariance terms. From (3.6) we have

1,o = Pr{X1 > O1;X, > 02} -p2

Pr{Xl> M}-p

= j 2pe(A+)m(1 - e- Pm ) dn- p2

2p It 2

(A + 2p)(A + p) (A +p)2

(A + 2/j) (A + p) 2

where M maximum(01, 02). Then from (3.7)

0,1= Pr{X1 > 01 ;X 2 >01 -p2

- Pr{N > 1 }-p

j e 2 (1 - &-1 )2A dn -

2A + /, (A +p)2
A 2

(A + 2 y) (A + p) 2
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where N minimum(XI, X 2). Finally, from (3.8)

ii= Pr{Xi >O1; X 1 > O1}-p

Ap
(A + p)

Inserting these results into (3.9) we have

Var (P2) I ,o + Gi + i'0 + 1
4

3 Ap(A 2 + 3Ap + 2) (3.10)
4 (2A + p)(A + 2p)(A +p) 2  (3.1

To illustrate the variance reduction achieved by the AVC estimator, we display

the ratio of Var(P2) to Var(3 2) plotted against 0 = P2/Pt = p/A in Figure 3.1.

These results are for exponential populations with k = 2 and v = 2. A ratio

less than 1 indicates a variance reduction with AVC. The reduction in variance

is on the order of roughly 20% over a range of 0 between 1 and 4. This covers

most of the practical range of 0 included in standard tables for BEM and used

by experimentors. Clearly, as 0 increases, both estimators approach 1 and the

associated variances approach 0.

In order to demonstrate the weak dependence of the variance reduction on the

distribution of the Xjj, consider the following example for k = 2 and v = 2 where

X and 0 are from continuous uniform populations. Specifically X - U(0, B) and

0 U(O, A), where 0 < A < B. Then we have P[2] = Pr{X > 0} = (2B - A)/2B

and p[i] = Pr{X < O} = A/2B. From (3.2) we have

Var()32) - 1A(2B - A)

8 B 2
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0.9

Ratio 0.8
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0

Figure 3.1: Ratio of Var(P2)/Var(j 2) for Exponential Populations with k 2,
v=2

We can then find the corresponding variance of the AVC estimator in a similar

fashion as we did for the exponential populations. From (3.9) we obtain

(2- 5A(2B - A)
Var(p 2) = 48B 2

In Figure 3.2 we show the reduction in the variance of the AVC estimator for

our uniform populations again as a ratio of Var(152)/Var(O5 2). The MLE estimator

variance is identical for both exponential and uniform distributions. We see a

flatter curve in Figure 3.2 than in Figure 3.1. In Figure 3.3 we illustrate the

difference between the exponential and uniform populations by plotting the ratio

of Var(P 2) for the uniform populations to Var(P2 ) for the exponential populations.

It is interesting to notice that this difference is neglible over most of the practical

range of 0.
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Ratio 0.8
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0.6 I I I
1 3 5 7 9

0

Figure 3.2: Ratio of Var(p 2)/Var(O3 2) for Uniform Populations with k 2, v 2

Once we have our covariance terms for a given k, we can find the exact variance

for pj for any v. For example with k = 2 using (3.9) we have

1
Var(pj(v)) - [(v - 1) - -+ ±o) (3.11)

As we increase k we add additional covariance terms to our variance calculations.

For example at k = 3, we can modify (3.11) to get

Var(pj(v)) - [(V - 1)2 (&,oo + oi,o + o'o,1) +

(V - 1) (61,1, +t 61,0,0 + G1,) -'+ 61,1,1]

where Ge,d,e are the analagous covariance terms for k = 3 populations, with c, d, e C

{0, 1}. These additional covariance terms become increasingly difficult to calculate
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Figure 3.3: Ratio of Uniform Var(P2) over Exponential Var(P2) for k 2, v 2

for even moderately large k. This computational complexity, along with the weak

distributional dependence of the AVC variance reduction, led us to consider an

asymptotic approximation for the k-sample U-statistic variance.

3.5 Asymptotic Results

The results presented so far for small k and v show that the variance of the AVC

estimator is weakly distribution dependent and tedious to compute. We derive

asymptotic variance expressions for each of the estimators that are easy to estimate

for all values of k.
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3.5.1 Preliminaries

Using our previous notation we have

Define

I1 (v) = number of wins for system j under BEM for fixed v

Zj(v) = number of wins for system j under AVC for fixed v

which gives us point estimators

P5 (V) 17~(v)
VZj (V)pi (V) - k
vk

Notice these are the same estimators we defined in (3.1) and (3.4) respectively,

except that we have introduced a dependence on v. Our approach is based on the

fact that standardized versions of fi and P are asymptotically multivariate normal

(MVN).

3.5.2 MLEs and AVC Estimators

Consider the asymptotic behavior of the MLEs. It is well known that as v --- + cx

v-(P, - pj) 4 N (0,p,(I - pj)). (3.12)

Similarly, consider the asymptotic behavior of our AVC estimator as v goes to

infinity. Following Randles and Wolfe (1979, pp. 105 106) let i be an integer such
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that 1 < i < k and define

HTa) h(a )( l l.. k 1

and
H a) h(a) (Xlf11, . . . ,

where
{ O7jl= J1 j i

ajl 031j Z.

Then define the covariance terms

0, ...,10,1,0, ....,0 -- H ,,),H (

where the only 1 in the subscript of 0.(,1, 0,.,o is in the Zth position and a E

{l,..., k}. With this notation a represents the population whose parameter we

are estimating, and i represents the only population with a common observation

in ) and Hi2 ). Then using our kernel from (3.5) we have for a = i

E[Hai)Hi21 Pr {Xaa > maxfXt, Xeif}}

and for a z i

E [-H I)H(O)] =Pr X aaa > X iai'Xa a > maxeoa,i{Xat};

[i J U Xar > Xia., Xafla > maxtoa,i{XIr} J

This leaves us with just two covariance expressions for each population

'C(a) (1) (a=T a Cov[Ha 1, a(a2)]  (3.13)

and

C(a) (2) = Cov[ l), H (a)] a 54 . (3.14)

68



Let N kv. We then state the following theorem due to Lehmann (1963). Some

of the notation has been simplified for our context.

Theorem 3.1 (Asymptotic Distribution of AVC Estimators)

Let Ua(XI , .. . ,Xlv; ... ; Xkl, ... , Xkv) = a be a k-sample U-statistic for the

parameter Pa of degree (1,...,1). If limvOc(v/N)= Ai, 0 < Ai < 1, for i =

1,...,k, and if E[{h(a)(X 1 1 ,.. , Xk1)} 2 ] < 00, then /N(pa - Pa) has a limiting

normal distribution with mean 0 and variance

S 0 10 (3.15)

iAi

provided a2 > 0.

Proof: See Lehmann (1963).

Using (3.13) and (3.14) we can simplify (3.15) as

o2 = k[C(j)(1) + (k - 1)L(/)(2)]. (3.16)

From Theorem 3.1 we have as v --- oc

\IN (j- pj) r N(0, a')  j - 1 ....k (3.17)

where N = kv and a 2 is defined in (3.16). In comparing 02 with the asymptotic

MLE variance in (3.12), we notice that the MLE expression is defined as x/v --- 00

while the AVC expression is defined as kv -- oc. To allow a fair comparison

between these asymptotic variances, we multiply (3.12) through by v/k to obtain

vk(V(/ - pj)) =4 N(0, kpj(1 - pj)) (3.18)
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as v/k -- + oc. We now have comparable asymptotic variances for AVC and

MLE from (3.17) and (3.18), respectively. In order to compare these asymptotic

variances with the exact variance of Tik for any k we divide each expression by N

to give us the following

1
VarA( j) -pj(I -pj) (3.19)

V

VarA(Pj) - [£()(1) + (k - 1)L(i)(2)]. (3.20)
V

To compare these results we remove the dependence of the pjs on v by selecting

a value for 0. Figure 3.4 plots v - VarA(52), v • VarA(f 2) and v times the exact

variance found in (3.10) against v for k = 2 exponential populations with 0 = 1.2.

This figure illustrates some very important facts about the relationship among the

variances of our estimators. First, notice the significant reduction in the asymptotic

approximation for our AVC variance over the MLE variance. Also notice how

quickly the exact AVC variance approaches the AVC asymptotic approximation.

At v = 15, the difference is only about 3%. This indicates that the asymptotic

approximation for the AVC variance is quite good at relatively small values of v

(v > 15) for 0 = 1.2. Calculations for larger values of 0 at v = 15 show the

difference between the exact and approximate AVC variance still about 3% for

0 = 2.0 and increasing to a difference of roughly 4% at 0 = 3.0. This shows

that the VarA(P 2) provides a better approximation to Var(P 2) when the difference

between systems is smaller.

With the favorable results presented above regarding the accuracy of our

asymptotic approximation for AVC variance, we incorporate this approximate

variance to calculate confidence intervals about our Pjs. Because of the ease in
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0.3 v • VarA PI 1 )-

Var 0.25

0.2 -

0.15
1 3 5 7 9 11 13 15

V

Figure 3.4: v-Var(i52 ), v-Var(5 2) and v.VarA( 2) for k = 2 Exponential Populations
with 0 = 1.2

calculating the exact variance for the MLE estimators, we use this exact variance

in constructing confidence intervals for the j3js.

Suppose we have generated v independent observations from each of k popu-

lations. We compute ii) and pj (j = 1, ... , k) using (3.1) and (3.4), respectively.

We then estimate VarA03j) and VarA(Pj) using (3.19) and (3.20), respectively. We

perform M macro-replications of these kv observations and let pji, Pji, VarA(i3 j)i

and Va-rA(pj)i represent the point estimates and variances from the th macro-

replication. The sample variance is an unbiased estimator of the true variance so

we calculate
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zi4, (P- j)Vars (Pj) -

where

Al

M

We can also calculate average variances defined as

M

Var (P) M VarA~p)
i=1 

M

i=1 M

We then estimate the bias of our AVC estimator variance as

Bias (Var(fj)) = VarA(Tj) - Vars(jj).

Let Z,/ 2 denote the a/2 quantile of the standard normal distribution. In

constructing our confidence intervals, we use the appropriate variance calculated

in each macro-replication and then using normal approximations compute for the

MLE

Pji ± ZQ/2 VarA(J),

and for AVC

Pji ± Za/2V7arA(ij)i.

We then count how many of the M intervals formed with each method capture pj

and compute the average confidence interval width.

We provide empirical results comparing the intervals between the two methods

in the following section.

72



3.6 Empirical Study

For our empirical study we focus on the difference in the variance of the MLEs

as compared to the variance of our AVC estimators. These comparisons take two

different forms. First we simply examine the differences in the variances between

the two methods. Since our AVC variance estimator is an approximation, we also

obtain an unbiased estimator of the true AVC variance and compute an estimated

bias for the AVC variance estimator. The variance reduction obtained is shown as

Vars (k)/VarA()3k). We then construct confidence intervals for the MLEs and AVC

estimates and compare the percentage of coverage and average confidence interval

width. All results are computed for Pk = P[k] using exponential population distri-

butions as described in §3.4.2. Results are based on M=10,000 macro-replications

for each of the v values listed.

Table 3.1 presents the variance results for each method for k = 2 to 5 popula-

tions and a number of different values of v. We start off with v = 20 to see how

well our approximation works for small values of v. We find a significant negative

bias in our AVC estimator variance at v = 20 for all k. At v = 50 this bias drops

to between 6% and 7% for k = 2 and less than 10% for k = 3. At k = 5 the

bias is stlI more than 10%. Moving up to v = 100, the bias for both k = 2 and

3 drops below 7% and for k = 5 the bias drops below 10%. At v = 200 the bias

effectively goes to zero for all k. These results indicate that we can substantially

underestimate Var(Pk) by using VarA(Pk) for v < 50. The last column of Table 3.1

shows the ratio of Vars(Pk)/Var(05k) to illustrate the variance reduction with the
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AVC estimator. Focusing on the results for v 200 at 0* 1.2, we see roughly

a 33% reduction at k = 2, roughly a 42% reduction at k = 3, and roughly a 45%

reduction at k = 5.

Looking at the 95% confidence interval results in Table 3.2, we see poor coverage

and relatively large intervals for v < 50 for both MLE and AVC. This indicates

that the normal approximation is not particularly good for either method at small

values of v. At v = 100 both MLE and AVC coverage jump up to 94% to 95%

in nearly all cases, with MLE coverage slightly better than the AVC coverage.

However, at v = 200 the AVC coverage slightly exceeds the MLE coverage, with

both methods achieving 95% coverage in almost all case. In all cases the average

AVC interval width shows a 20-25% reduction over the average MLE interval width.

3.7 Conclusions

We have shown that our AVC estimator for multinomial success probabilities has

a no larger variance than the MLE. Our results indicate a reduction in variance on

the order of 33% for k = 2, increasing to roughly 45% for k = 5 populations can be

expected. We have also shown that this variance reduction depends weakly on the

distribution of the performance measures from the populations. An asymptotic

approximation for our AVC estimator variance was found and this was used to

compare to the MLE variance directly, and through the construction of confidence

intervals. For small v we saw that our AVC estimator variance has a relatively

large negative bias. However, for v > 100, this bias became insignificant. The

confidence interval results show similar percent coverage with AVC and MLE for
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k 0* v Vars(Pk) Var(Pk) VarA(k) Bias(VarA(Pk)) Vars(pk)VarA(P)

1.2 20 .0086 .0074 .0118 -.0012 .7288
2 1.2 50 .0034 .0032 .0049 -.0002 .6939

1.2 100 .0017 .0016 .0025 -.0001 .6800
1.2 200 .0008 .0008 .0012 .0000 .6667
2.0 20 .0076 .0065 .0105 -.0011 .7238

2 2.0 50 .0030 .0028 .0044 -.0002 .6818
2.0 100 .0015 .0014 .0022 -.0001 .6818
2.0 200 .0007 .0007 .0011 .0000 .6364
1.2 20 .0075 .0061 .0111 -.0014 .6757

3 1.2 50 .0030 .0027 .0046 -.0003 .6522
1.2 100 .0015 .0014 .0023 -.0001 .6522
1.2 200 .0007 .0007 .0012 .0000 .5833
2.0 20 .0085 .0069 .0119 -.0016 .7143

3 2.0 50 .0034 .0031 .0049 -.0003 .6939
2.0 100 .0017 .0016 .0025 -.0001 .6800
2.0 200 .0008 .0008 .0012 .0000 .6667
1.2 20 .0053 .0038 .0084 -.0015 .6310

5 1.2 50 .0021 .0018 .0035 -.0003 .6000
1.2 100 .0011 .0010 .0018 -.0001 .6111
1.2 200 .0005 .0005 .0009 .0000 .5555
2.0 20 .0073 .0053 .0105 -.0020 .6952

5 2.0 50 .0029 .0026 .0043 -.0003 .6744
2.0 100 .0015 .0014 .0022 -.0001 .6818
2.0 200 .0007 .0007 .0011 .0000 .6364

Table 3.1: AVC and MLE Variance for Pk
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AVC MLE
Percentage Average Percentage Average

k 0* v Coverage Width Coverage Width
1.2 20 .92 .34 .92 .42

2 1.2 50 .94 .22 .93 .27
1.2 100 .94 .16 .94 .19
1.2 200 .95 .11 .94 .14

2.0 20 .91 .31 .92 .40
2 2.0 50 .94 .21 .95 .26

2.0 100 .94 .15 .96 .18
2.0 200 .95 .10 .95 .13
1.2 20 .90 .31 .94 .41

3 1.2 50 .93 .20 .94 .27
1.2 100 .94 .15 .95 .19
1.2 200 .95 .10 .94 .13
2.0 20 .91 .32 .96 .43

3 2.0 50 .93 .22 .93 .27
2.0 100 .94 .16 .94 .20
2.0 200 .95 .11 .95 .14
1.2 20 .87 .24 .94 .35

5 1.2 50 .92 .17 .95 .23
1.2 100 .93 .12 .95 .16
1.2 200 .94 .09 .94 .12
2.0 20 .88 .28 .93 .40

5 2.0 50 .92 .20 .94 .26
2.0 100 .94 .14 .95 .18
2.0 200 .95 .10 .95 .13

Table 3.2: AVC and MLE 95% Confidence Intervals for Pk
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v > 100 with the average AVC interval width 20-25% less than MLE. Our AVC

estimators make more efficient use of the data already available to provide a more

precise set of estimators for the multinomial success probabilities.
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Appendix A

PROOFS

Proof of Theorem 2.1:

From (2.9), as v -* oo we have pi~v) -+ 1lk for all i. Then from Lemma 2.1

A2 (V)(Ak (V)
/l( -1/k) -Ilk 2  .. -Ilk 2

MVN -Ilk 2  1/k(1 - Ilk) ... -Ilk 2  J
Since Ai (v) - A, (v) =Ai (v) _j=~2 Aj (v) (i 0 1), we take the difference of MVN

random variables and obtainCA2 (V) - A, (v)

Ak (V) -A A(v)J

MV _ k6 1 1/2 1 . 1/2(A1

-~J K1/2 1/2 ... 1 J
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-- bern

Assuming population 1 is the best, in terms of PCS we can state

-- bern
PCS lim Pr {YI(v) > Y (v), Vj = 1}

v---00

lim Pr Yj(V) -v/k >j(v) -v/k vj l}

lim Pr{Ai(v) > Aj(v), Vj :A 1}

V -*400= lim oPr{Aj(v)- Ai(v) <O, Vj#:i1}

Pr{W4- <0, j=2,3,...,k} (A.2)

where (W2,..., . ,W) - (A.1). If we add k to each 47j to obtain a random vector

with a mean of zero, then from (A.2) we have

-- 4 bern {1473 +k5 k 5 
PCS = Pr <- , Ik2,...,k

= Pr Qj < -H=2,..., k

where

(•:) MVN (" ( 1 .. 1/.

1/2 1/2 ... 1

Proof of Theorem 2.2:

Define E(N), the covariance matrix computed for (Fv), . . . , F(v)), as

-p,(N)

E(N) = Var "

pk(N)

Let EN[pj(N)] = pj(N) where EN[PJj(N)] denotes the expected value at sample

size N (N = kv). Lehmann (1963, pp. 964-965) shows that Lemma 2.2 holds even
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if the distributions of the data depend upon the sample size provided

E(N) --- E,

where E is nonsingular as N -- oc. Since P2, ,Pk

to be nonsingular. We assume

'( N(P2(N) -P 2 (N))
Var -- 4 E

VN (Pk (N) -Pk(N))

for any reasonable set of F-(v). We define E as II (ab)II in (2.12).

To proceed, we need to consider the covariance terms defined in Theorem 2.2.

Eab) - E[Hi1 H21 ] - E[H 1 )]E[Hi2]

- [H= )H] - 1/k 2

since

f 1, ifXaa, > XffVg V a
Z1 0, otherwise

{ 1, ifXbb > XtVe# bHA) = 0, otherwise

Using our kernel from (2.11) we can express

k k

E[H(a)H(a) ]  E [(Xaa - Xiai) X H O(Xaa. -"fl)

i=l,ioa f=l,foa

We can then write this as a probability statement combining the two indices to

come up with

[(a)rH (a)] Pr {X > rmax{Xt., IXoX }}

al a2 a8

80



This particular case is easy to illustrate and we extend this development for other

expected value terms in less detail.

There are a number of different cases we need to consider for the covariance

terms. In our notation -,b a represents the population with the largest value in

Ha). b represents the population with the largest value in H(b); and i represents the

one population that has the same observation in both vectors (pseudo-replications).

We can enumerate the different cases for the covariance terms based on the values

of a, b and i. We have the following four cases.

1. a = ; (a,a)

2. a = b i; a,a)

3. a 4 b i; &,b)

4. a , b, a = i or b i; (,b) or b)a o

Asymptotically Xj - F Vj which allows us to construct distribution free ex-
f(a,b) 

-

pressions for -ai since each Xi has the same probability of being the largest value

in a single vector. For case 1 we have

(a'a) Pr Xaaa > max{Xeae, Xf}I -

1 1(A.3)
2k - 1 V

This follows since we have 2(k - 1) + 1 independent and identically distributed

random variables and we want the probability that a particular one is the largest.

In our context this means we want the probability that a single observation from

population a is a winner in two separate vectors containing no other common

observations.
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Case 2 is more difficult to approach. We have

a,a) - Xaa > Vit, Xa~a > max5a,i{Xfc}; 1
Xa, > Xij, Xa/a > maxj5a,i{Xoe} k2

where the common observation in each of the two vectors is not the largest, and

both observations from population a are the largest in their respective vectors.

The ordering of the random variables from this pair of vectors must look like the

following:

Xaaa > {h of the Xt,, } > XaO. >

{(k- 2)- hof theXf,,, (k - 2) of theXt,3, andXXi,}

or interchanging Xac, and XaOo

Xao > {hof the Xe,} > Xaca >

{(k - 2) - hof the X ,3, (k - 2) of the Xje, and Xi,}

where h = 0, 1,..., k - 2. For each subset of size h there are

h!((k - 2) - h + (k- 2) + 1)!

equally likely orderings and there are

ways to select an h. With a total of (2k - 1)! possible orderings we then have

aka) 2- ( h 2)h!((k -2)-h ± (k-2) ±1)!

(2k- 1)!
2 1

k(2k- 1) k(i)2
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We proceed in a similar fashion for case 3

(a,b) - pr { Xaaa > XjajIXaiI , > maxesa,i{Xe}; } 1
Xb b > Xiai, Xbb > max,4b,i{AXO} k2

= a,a)

2 1
k(2k - 1) k2

since all random variables are identically distributed and there is no distinction

between XbIb and Xaj3.

For case 4 we have

(a,b) Pa Pr Xaa > max{ X&q }; Xbb > X.., Xb, > max{Xf I VL a /ea t , a, b J

As we did for (a,a) previously, we need to identify all possible arrangements of the

random variables from two vectors that meet the above conditions. The following

orderings work

XbI b > {hof theXjOe} > Xal, > {(k- 2)- hof theXtz , (k - 1)of theXte}.

Then proceeding as we did for (a a) we obtain for a 0 b

-h=O \kh 2 h! ((k -2) -h + (k -1))! 1

(a,b) - z(p h k 2 h k 1
a (2k- 1)! k2

1 1 (A.6)
k(2k- 1) k2 "

We get identical results for a,b) with a # b.

Given covariance expressions from (A.3) and (A.4) we find the diagonal terms

of U(a,a) from (2.12) as
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k

,F(a,,a) -k S .a,a)

-k Laa) + (k - 1) ja~a)J

- k I 2( (k ) k

2k - 1 (A. 7)

With the covariance expressions from (A.5) and (A.6) we can find the off-

diagonal terms of U(a,b) from (2.12) as

or a, b) k [ (a~b) + (a,b) + Y A'a,b I
k[2((k 1  k) + (k -2) ( 2U 1k)

- 1 (A.8)

Combining the terms in (A.8) with those in (A.7) we let 77 11(k - 1) and we

have

2k k-) 1 (A.9)

From Lehman (1963) we know that

N-(P 2 (N) - (1/k - 6/V/-v)) 0 V ,](.O
(P(k(N) -(1/k - /Vv))) 0K~

Asymptotically each Pj 1/k with our model, so each difference in (A.10) becomes

vN(j5,(N) - 1/k). The resultant shift in the mean of (A.10) can be found as

vN(pj(N) - Ilk) = N(pi(N) - (Ilk - 6/VT-)) - vfN6 /7T

= NN(pj (N) - (1/ k) - 6 / vf)) - vlk&5
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for j 2,.. .,k. Therefore, we have

• MVN • E.

IN(N(N)- I/k) -v75
avc

Assuming population 1 is the best, in terms of PCS we have

P avc
PCs lim Pr{pl (N) > pj (N), Vj € 1}

N--oo

lim Pr{v/ N(P(N) - I/k) > v/N(py(N) - I/k), Vj :A 1}
N---+oc

lim Pr{ -N(pj(N) - i/k) - ,1-N(p(N) - I/k) < 0, Vj 7 1}
N ----oo

= Pr{j < 0, Vj 7i1}

where

('a> MVNK "k, T S)

Using our variance and covariance terms from (A.9) the diagonal terms of S are

o(a,a) + 0 (b,b) - 2 or(a,b) 2 -1 (1+1-2(k- 1 ))

2k
2k- 1

and the off-diagonal terms are

o-(ab) -_ (al) - 6(1,b) + o 1,1 k--11 +1  + 1 -1
2k-1I k-1 + + -+1k-
k

2k- 1

Combining these terms we have

_ __(1 1/2 .. 1/2

- 2k 1/2 1 ... 1/2

2k- I
1/2 1/2 ... 1
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Then

PC avc = P V9 +k vlk3 k v'k5 ,..
I 2k/(2k - 1) 2 k/(-2k - 1)'

Pr{Qi<2/(2k- 1)'

where
Q2 0 1 1/2 ... 1/2

1/2 1/2 .. 1
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Appendix B

TABLES OF RESULTS

The following tables are based on 100,000 macro-replications. The ratio column

is Pcsavc/pCSbem and the s.e. columns are the respective standard errors. The

population distributions used are discussed in §2.6.
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V PCShem PCSav Ratio s.e. PCSbem s.e. pCSavc

2 0.5463 0.5566 1.0188 0.0016 0.0016
4 0.5684 0.5849 1.0290 0.0016 0.0016
6 0.5853 0.6058 1.0350 0.0016 0.0015
8 0.5998 0.6248 1.0416 0.0015 0.0015
10 0.6106 0.6370 1.0432 0.0015 0.0015
12 0.6218 0.6502 1.0457 0.0015 0.0015
14 0.6317 0.6615 1.0471 0.0015 0.0015
16 0.6405 0.6722 1.0495 0.0015 0.0015
18 0.6475 0.6813 1.0523 0.0015 0.0015
20 0.6559 0.6901 1.0521 0.0015 0.0015
22 0.6641 0.6981 1.0512 0.0015 0.0015
24 0.6711 0.7057 1.0515 0.0015 0.0014
26 0.6770 0.7133 1.0536 0.0015 0.0014
28 0.6825 0.7215 1.0572 0.0015 0.0014
30 0.6893 0.7277 1.0558 0.0015 0.0014
32 0.6944 0.7331 1.0557 0.0015 0.0014
34 0.7004 0.7386 1.0546 0.0014 0.0014
36 0.7053 0.7454 1.0567 0.0014 0.0014
38 0.7110 0.7520 1.0577 0.0014 0.0014
40 0.7164 0.7574 1.0573 0.0014 0.0014
42 0.7210 0.7635 1.0590 0.0014 0.0013
44 0.7257 0.7694 1.0602 0.0014 0.0013
46 0.7299 0.7727 1.0586 0.0014 0.0013
48 0.7342 0.7781 1.0598 0.0014 0.0013
50 0.7378 0.7832 1.0615 0.0014 0.0013

Table B.1: Simulation Results for Exponential Populations with 0 = 1.2 and k 2
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V PCSbe m PCSavc Ratio s.e. PCSbem s.e. pCSavc

2 0.3763 0.3900 1.0365 0.0015 0.0015
4 0.3978 0.4126 1.0371 0.0015 0.0016
6 0.4127 0.4317 1.0462 0.0016 0.0016
8 0.4242 0.4501 1.0610 0.0016 0.0016

10 0.4358 0.4643 1.0656 0.0016 0.0016
12 0.4454 0.4747 1.0658 0.0016 0.0016
14 0.4546 0.4871 1.0714 0.0016 0.0016
16 0.4639 0.4999 1.0775 0.0016 0.0016
18 0.4726 0.5106 1.0805 0.0016 0.0016
20 0.4799 0.5203 1.0841 0.0016 0.0016
22 0.4880 0.5299 1.0859 0.0016 0.0016
24 0.4932 0.5372 1.0892 0.0016 0.0016
26 0.4988 0.5454 1.0934 0.0016 0.0016
28 0.5057 0.5540 1.0954 0.0016 0.0016
30 0.5117 0.5613 1.0970 0.0016 0.0016
32 0.5169 0.5698 1.1024 0.0016 0.0016
34 0.5230 0.5747 1.0989 0.0016 0.0016
36 0.5279 0.5801 1.0987 0.0016 0.0016
38 0.5347 0.5881 1.0997 0.0016 0.0016
40 0.5398 0.5950 1.1022 0.0016 0.0016
42 0.5446 0.6021 1.1056 0.0016 0.0015
44 0.5487 0.6079 1.1080 0.0016 0.0015
46 0.5542 0.6129 1.1059 0.0016 0.0015
48 0.5583 0.6172 1.1056 0.0016 0.0015
50 0.5625 0.6247 1.1107 0.0016 0.0015

Table B.2: Simulation Results for Exponential Populations with 0 - 1.2 and k 3
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V PCSbem PCSavc Ratio s.e. PCSbem s.e. PCavc
2 0.2853 0.2983 1.0456 0.0014 0.0014
4 0.3032 0.3173 1.0465 0.0015 0.0015
6 0.3150 0.3352 1.0643 0.0015 0.0015
8 0.3258 0.3501 1.0745 0.0015 0.0015
10 0.3335 0.3614 1.0834 0.0015 0.0015
12 0.3427 0.3712 1.0831 0.0015 0.0015
14 0.3492 0.3818 1.0935 0.0015 0.0015
16 0.3573 0.3922 1.0978 0.0015 0.0015
18 0.3640 0.4010 1.1016 0.0015 0.0016
20 0.3716 0.4103 1.1041 0.0015 0.0016
22 0.3795 0.4203 1.1075 0.0015 0.0016
24 0.3839 0.4266 1.1113 0.0015 0.0016
26 0.3893 0.4350 1.1173 0.0015 0.0016
28 0.3949 0.4431 1.1220 0.0015 0.0016
30 0.4000 0.4513 1.1282 0.0015 0.0016
32 0.4050 0.4569 1.1281 0.0016 0.0016

34 0.4093 0.4637 1.1329 0.0016 0.0016
36 0.4147 0.4680 1.1286 0.0016 0.0016
38 0.4184 0.4750 1.1352 0.0016 0.0016
40 0.4245 0.4820 1.1354 0.0016 0.0016
42 0.4287 0.4886 1.1398 0.0016 0.0016

44 0.4327 0.4936 1.1408 0.0016 0.0016
46 0.4374 0.4993 1.1417 0.0016 0.0016
48 0.4421 0.5037 1.1393 0.0016 0.0016
50 0.4465 0.5100 1.1423 0.0016 0.0016

Table B.3: Simulation Results for Exponential Populations with 0 = 1.2 and k 4
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PCSbem PC~avc Ratio s.e. PCSbem s.e. PCSavc
2 0.2299 0.2413 1.0495 0.0013 0.0014
4 0.2443 0.2581 1.0566 0.0014 0.0014
6 0.2543 0.2709 1.0656 0.0014 0.0014
8 0.2637 0.2849 1.0806 0.0014 0.0014
10 0.2702 0.2952 1.0925 0.0014 0.0014
12 0.2786 0.3047 1.0938 0.0014 0.0015
14 0.2840 0.3122 1.0989 0.0014 0.0015
16 0.2898 0.3217 1.1098 0.0014 0.0015
18 0.2955 0.3289 1.1128 0.0014 0.0015
20 0.3029 0.3371 1.1129 0.0015 0.0015
22 0.3079 0.3470 1.1268 0.0015 0.0015
24 0.3130 0.3524 1.1261 0.0015 0.0015
26 0.3172 0.3596 1.1337 0.0015 0.0015
28 0.3224 0.3669 1.1382 0.0015 0.0015

30 0.3267 0.3736 1.1435 0.0015 0.0015
32 0.3305 0.3787 1.1458 0.0015 0.0015

34 0.3345 0.3854 1.1520 0.0015 0.0015
36 0.3390 0.3901 1.1507 0.0015 0.0015
38 0.3431 0.3955 1.1527 0.0015 0.0015
40 0.3477 0.4018 1.1558 0.0015 0.0016
42 0.3504 0.4074 1.1625 0.0015 0.0016
44 0.3555 0.4128 1.1612 0.0015 0.0016
46 0.3593 0.4180 1.1634 0.0015 0.0016
48 0.3632 0.4220 1.1619 0.0015 0.0016
50 0.3674 0.4267 1.1614 0.0015 0.0016

Table B.4: Simulation Results for Exponential Populations with 0 = 1.2 and k = 5
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V PCShem pCSvc Ratio s.e. PCSbe  s.e. PCSvc
2 0.1171 0.1216 1.0390 0.0010 0.0010
4 0.1222 0.1302 1.0660 0.0010 0.0011
6 0.1292 0.1370 1.0605 0.0011 0.0011
8 0.1338 0.1453 1.0859 0.0011 0.0011
10 0.1364 0.1503 1.1014 0.0011 0.0011
12 0.1403 0.1544 1.1008 0.0011 0.0011
14 0.1429 0.1595 1.1165 0.0011 0.0012
16 0.1462 0.1621 1.1091 0.0011 0.0012
18 0.1487 0.1664 1.1194 0.0011 0.0012
20 0.1518 0.1700 1.1196 0.0011 0.0012
22 0.1549 0.1747 1.1274 0.0011 0.0012
24 0.1571 0.1783 1.1348 0.0012 0.0012
26 0.1594 0.1819 1.1413 0.0012 0.0012
28 0.1614 0.1859 1.1520 0.0012 0.0012
30 0.1638 0.1901 1.1606 0.0012 0.0012
32 0.1666 0.1937 1.1626 0.0012 0.0012

34 0.1679 0.1960 1.1674 0.0012 0.0013
36 0.1708 0.1987 1.1638 0.0012 0.0013
38 0.1735 0.2016 1.1621 0.0012 0.0013
40 0.1759 0.2052 1.1665 0.0012 0.0013
42 0.1778 0.2084 1.1718 0.0012 0.0013

44 0.1800 0.2111 1.1732 0.0012 0.0013
46 0.1829 0.2137 1.1680 0.0012 0.0013
48 0.1846 0.2165 1.1730 0.0012 0.0013
50 0.1866 0.2190 1.1737 0.0012 0.0013

Table B.5: Simulation Results for Exponential Populations with 0 1.2 and k 10
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V PCSbe m PCSvc Ratio s.e. PCSbem s.e. pCSvc

2 0.6675 0.7003 1.0491 0.0015 0.0014
4 0.7408 0.7901 1.0665 0.0014 0.0013
6 0.7903 0.8428 1.0665 0.0013 0.0012
8 0.8270 0.8772 1.0606 0.0012 0.0010

10 0.8546 0.9040 1.0578 0.0011 0.0009
12 0.8779 0.9243 1.0528 0.0010 0.0008
14 0.8964 0.9387 1.0472 0.0010 0.0008
16 0.9117 0.9516 1.0437 0.0009 0.0007
18 0.9239 0.9604 1.0395 0.0008 0.0006
20 0.9347 0.9677 1.0353 0.0008 0.0006
22 0.9439 0.9739 1.0318 0.0007 0.0005
24 0.9522 0.9789 1.0281 0.0007 0.0005
26 0.9577 0.9826 1.0260 0.0006 0.0004
28 0.9635 0.9855 1.0228 0.0006 0.0004
30 0.9680 0.9882 1.0208 0.0006 0.0003
32 0.9727 0.9906 1.0184 0.0005 0.0003
34 0.9762 0.9923 1.0165 0.0005 0.0003
36 0.9792 0.9930 1.0141 0.0005 0.0003
38 0.9816 0.9943 1.0130 0.0004 0.0002
40 0.9837 0.9953 1.0118 0.0004 0.0002
42 0.9856 0.9959 1.0104 0.0004 0.0002
44 0.9875 0.9963 1.0089 0.0004 0.0002
46 0.9891 0.9973 1.0083 0.0003 0.0002
48 0.9905 0.9976 1.0071 0.0003 0.0002
50 0.9914 0.9978 1.0064 0.0003 0.0001

Table B.6: Simulation Results for Exponential Populations with 0 = 2.0 and k 2
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V PCSe m PCS'vc Ratio s.e. PCSbem s.e. PCSavc
2 0.5005 0.5560 1.1109 0.0016 0.0016
4 0.5936 0.6481 1.0917 0.0016 0.0015
6 0.6460 0.7133 1.1043 0.0015 0.0014
8 0.6868 0.7635 1.1116 0.0015 0.0013
10 0.7266 0.8022 1.1041 0.0014 0.0013
12 0.7579 0.8345 1.1011 0.0014 0.0012
14 0.7827 0.8600 1.0988 0.0013 0.0011
16 0.8082 0.8823 1.0917 0.0012 0.0010
18 0.8280 0.9007 1.0878 0.0012 0.0009
20 0.8457 0.9157 1.0827 0.0011 0.0009
22 0.8638 0.9289 1.0753 0.0011 0.0008
24 0.8756 0.9376 1.0707 0.0010 0.0008
26 0.8879 0.9468 1.0663 0.0010 0.0007
28 0.9003 0.9554 1.0612 0.0009 0.0007
30 0.9097 0.9609 1.0562 0.0009 0.0006
32 0.9185 0.9666 1.0525 0.0009 0.0006
34 0.9260 0.9718 1.0495 0.0008 0.0005
36 0.9334 0.9757 1.0453 0.0008 0.0005
38 0.9392 0.9790 1.0424 0.0008 0.0005
40 0.9444 0.9822 1.0400 0.0007 0.0004
42 0.9507 0.9842 1.0352 0.0007 0.0004
44 0.9547 0.9866 1.0334 0.0007 0.0004
46 0.9590 0.9887 1.0310 0.0006 0.0003
48 0.9629 0.9901 1.0282 0.0006 0.0003
50 0.9670 0.9908 1.0247 0.0006 0.0003

Table B.7: Simulation Results for Exponential Populations with 0 2.0 and k 3
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SPCS em PCSavc Ratio s.e. PCSb s.e. PCSavc
2 0.4002 0.4554 1.1377 0.0015 0.0016
4 0.4867 0.5415 1.1124 0.0016 0.0016
6 0.5319 0.6086 1.1442 0.0016 0.0015
8 0.5788 0.6632 1.1458 0.0016 0.0015
10 0.6154 0.7072 1.1492 0.0015 0.0014
12 0.6516 0.7458 1.1447 0.0015 0.0014
14 0.6786 0.7782 1.1469 0.0015 0.0013
16 0.7072 0.8069 1.1410 0.0014 0.0012

18 0.7313 0.8305 1.1356 0.0014 0.0012
20 0.7544 0.8522 1.1296 0.0014 0.0011
22 0.7758 0.8714 1.1233 0.0013 0.0011
24 0.7916 0.8845 1.1174 0.0013 0.0010
26 0.8090 0.8982 1.1102 0.0012 0.0010
28 0.8227 0.9105 1.1068 0.0012 0.0009
30 0.8366 0.9202 1.0999 0.0012 0.0009
32 0.8498 0.9303 1.0947 0.0011 0.0008
34 0.8604 0.9381 1.0904 0.0011 0.0008
36 0.8713 0.9454 1.0851 0.0011 0.0007
38 0.8805 0.9510 1.0801 0.0010 0.0007
40 0.8890 0.9573 1.0769 0.0010 0.0006
42 0.8984 0.9621 1.0709 0.0010 0.0006

44 0.9065 0.9667 1.0665 0.0009 0.0006
46 0.9125 0.9706 1.0637 0.0009 0.0005
48 0.9188 0.9729 1.0588 0.0009 0.0005
50 0.9249 0.9766 1.0559 0.0008 0.0005

Table B.8: Simulation Results for Exponential Populations with 0 = 2.0 and k 4
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V PCSb em pCSavc Ratio s.e. PCSbem s.e. PCSavc

2 0.3333 0.3840 1.1521 0.0015 0.0015
4 0.4069 0.4634 1.1388 0.0016 0.0016
6 0.4509 0.5271 1.1689 0.0016 0.0016
8 0.4941 0.5816 1.1771 0.0016 0.0016
10 0.5307 0.6256 1.1789 0.0016 0.0015
12 0.5635 0.6674 1.1843 0.0016 0.0015
14 0.5931 0.7017 1.1831 0.0016 0.0014
16 0.6210 0.7338 1.1817 0.0015 0.0014
18 0.6474 0.7610 1.1754 0.0015 0.0013
20 0.6708 0.7857 1.1713 0.0015 0.0013
22 0.6923 0.8085 1.1680 0.0015 0.0012
24 0.7113 0.8273 1.1631 0.0014 0.0012
26 0.7300 0.8431 1.1548 0.0014 0.0012
28 0.7472 0.8592 1.1498 0.0014 0.0011
30 0.7633 0.8720 1.1424 0.0013 0.0011
32 0.7785 0.8847 1.1364 0.0013 0.0010

34 0.7905 0.8952 1.1325 0.0013 0.0010
36 0.8045 0.9054 1.1254 0.0013 0.0009
38 0.8158 0.9148 1.1214 0.0012 0.0009
40 0.8274 0.9230 1.1156 0.0012 0.0008
42 0.8379 0.9314 1.1116 0.0012 0.0008
44 0.8483 0.9381 1.1059 0.0011 0.0008
46 0.8562 0.9441 1.1027 0.0011 0.0007
48 0.8652 0.9479 1.0956 0.0011 0.0007
50 0.8732 0.9537 1.0922 0.0011 0.0007

Table B.9: Simulation Results for Exponential Populations with 0 = 2.0 and k 5
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V PCSbem PCSav Ratio s.e. PCSbem s.e. PCS"ac
2 0.1820 0.2106 1.1572 0.0012 0.0013
4 0.2141 0.2596 1.2126 0.0013 0.0014
6 0.2497 0.3011 1.2058 0.0014 0.0015
8 0.2737 0.3390 1.2386 0.0014 0.0015
10 0.2974 0.3747 1.2599 0.0014 0.0015
12 0.3225 0.4067 1.2610 0.0015 0.0016
14 0.3439 0.4353 1.2656 0.0015 0.0016
16 0.3640 0.4628 1.2716 0.0015 0.0016
18 0.3835 0.4891 1.2754 0.0015 0.0016
20 0.4029 0.5147 1.2774 0.0016 0.0016
22 0.4212 0.5393 1.2805 0.0016 0.0016
24 0.4383 0.5610 1.2801 0.0016 0.0016
26 0.4548 0.5825 1.2808 0.0016 0.0016
28 0.4713 0.6022 1.2777 0.0016 0.0015
30 0.4864 0.6217 1.2783 0.0016 0.0015
32 0.5008 0.6407 1.2793 0.0016 0.0015
34 0.5154 0.6587 1.2780 0.0016 0.0015
36 0.5301 0.6752 1.2738 0.0016 0.0015
38 0.5437 0.6905 1.2699 0.0016 0.0015
40 0.5576 0.7055 1.2653 0.0016 0.0014
42 0.5693 0.7205 1.2656 0.0016 0.0014
44 0.5820 0.7340 1.2612 0.0016 0.0014
46 0.5947 0.7468 1.2557 0.0016 0.0014
48 0.6056 0.7581 1.2520 0.0015 0.0014
50 0.6171 0.7703 1.2482 0.0015 0.0013

Table B.10: Simulation Results for Exponential Populations with 0 2.0 and
k = 10
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V PCSbem PCSvc Ratio s.e. PCSbem s.e. PCSavc
2 0.5468 0.5601 1.0244 0.0016 0.0016
4 0.5688 0.5881 1.0338 0.0016 0.0016
6 0.5849 0.6064 1.0368 0.0016 0.0015
8 0.5993 0.6221 1.0381 0.0016 0.0015
10 0.6122 0.6363 1.0395 0.0015 0.0015
12 0.6220 0.6490 1.0433 0.0015 0.0015
14 0.6322 0.6617 1.0466 0.0015 0.0015
16 0.6400 0.6704 1.0474 0.0015 0.0015
18 0.6479 0.6793 1.0484 0.0015 0.0015
20 0.6585 0.6900 1.0478 0.0015 0.0015
22 0.6647 0.6989 1.0514 0.0015 0.0015
24 0.6715 0.7073 1.0533 0.0015 0.0014
26 0.6779 0.7136 1.0527 0.0015 0.0014
28 0.6844 0.7225 1.0557 0.0015 0.0014
30 0.6913 0.7283 1.0535 0.0015 0.0014
32 0.6953 0.7349 1.0570 0.0015 0.0014
34 0.7017 0.7410 1.0561 0.0014 0.0014
36 0.7066 0.7485 1.0593 0.0014 0.0014
38 0.7115 0.7538 1.0595 0.0014 0.0014
40 0.7167 0.7572 1.0565 0.0014 0.0014
42 0.7214 0.7636 1.0584 0.0014 0.0013
44 0.7252 0.7679 1.0588 0.0014 0.0013
46 0.7305 0.7731 1.0582 0.0014 0.0013
48 0.7338 0.7787 1.0612 0.0014 0.0013
50 0.7376 0.7824 1.0607 0.0014 0.0013

Table B.11: Simulation Results for Uniform Populations with 0 = 1.2 and k 2
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V PCSbe m PCSvc Ratio s.e. PCSbem s.e. pCSvc

2 0.3759 0.4030 1.0720 0.0015 0.0016
4 0.3992 0.4197 1.0514 0.0015 0.0016
6 0.4133 0.4372 1.0580 0.0016 0.0016
8 0.4236 0.4534 1.0704 0.0016 0.0016
10 0.4351 0.4643 1.0671 0.0016 0.0016
12 0.4459 0.4795 1.0753 0.0016 0.0016
14 0.4536 0.4909 1.0820 0.0016 0.0016
16 0.4644 0.5007 1.0783 0.0016 0.0016
18 0.4717 0.5109 1.0830 0.0016 0.0016
20 0.4793 0.5215 1.0880 0.0016 0.0016
22 0.4877 0.5314 1.0896 0.0016 0.0016
24 0.4922 0.5406 1.0983 0.0016 0.0016
26 0.4977 0.5479 1.1008 0.0016 0.0016
28 0.5061 0.5570 1.1006 0.0016 0.0016
30 0.5127 0.5631 1.0984 0.0016 0.0016
32 0.5177 0.5709 1.1028 0.0016 0.0016
34 0.5229 0.5774 1.1042 0.0016 0.0016
36 0.5288 0.5857 1.1077 0.0016 0.0016
38 0.5338 0.5919 1.1088 0.0016 0.0016
40 0.5397 0.5975 1.1071 0.0016 0.0016
42 0.5443 0.6042 1.1102 0.0016 0.0015
44 0.5487 0.6097 1.1111 0.0016 0.0015
46 0.5533 0.6156 1.1126 0.0016 0.0015
48 0.5590 0.6205 1.1099 0.0016 0.0015
50 0.5619 0.6254 1.1131 0.0016 0.0015

Table B.12: Simulation Results for Uniform Populations with 0 = 1.2 and k 3
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V PCSbem PCavc Ratio s.e. PCSbem s.e. PCSavc
2 0.2866 0.3141 1.0959 0.0014 0.0015
4 0.3066 0.3237 1.0558 0.0015 0.0015
6 0.3150 0.3416 1.0846 0.0015 0.0015
8 0.3269 0.3527 1.0786 0.0015 0.0015
10 0.3342 0.3658 1.0945 0.0015 0.0015
12 0.3443 0.3793 1.1017 0.0015 0.0015
14 0.3506 0.3889 1.1092 0.0015 0.0015
16 0.3592 0.3963 1.1034 0.0015 0.0015
18 0.3645 0.4066 1.1154 0.0015 0.0016
20 0.3721 0.4155 1.1166 0.0015 0.0016
22 0.3792 0.4252 1.1212 0.0015 0.0016
24 0.3848 0.4320 1.1228 0.0015 0.0016
26 0.3891 0.4394 1.1295 0.0015 0.0016
28 0.3951 0.4462 1.1291 0.0015 0.0016
30 0.4005 0.4550 1.1362 0.0016 0.0016
32 0.4057 0.4604 1.1348 0.0016 0.0016
34 0.4100 0.4675 1.1402 0.0016 0.0016
36 0.4148 0.4743 1.1433 0.0016 0.0016
38 0.4197 0.4799 1.1435 0.0016 0.0016
40 0.4233 0.4859 1.1477 0.0016 0.0016
42 0.4286 0.4927 1.1494 0.0016 0.0016
44 0.4340 0.4964 1.1439 0.0016 0.0016
46 0.4370 0.5037 1.1527 0.0016 0.0016
48 0.4415 0.5075 1.1496 0.0016 0.0016
50 0.4464 0.5119 1.1467 0.0016 0.0016

Table B.13: Simulation Results for Uniform Populations with 0 = 1.2 and k 4
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V PCSbem pCSvc Ratio s.e. PCSbem s.e. PCSvc
2 0.2307 0.2566 1.1122 0.0013 0.0014
4 0.2459 0.2660 1.0815 0.0014 0.0014
6 0.2544 0.2810 1.1045 0.0014 0.0014
8 0.2631 0.2914 1.1074 0.0014 0.0014

10 0.2703 0.3020 1.1172 0.0014 0.0015
12 0.2782 0.3130 1.1250 0.0014 0.0015
14 0.2843 0.3197 1.1247 0.0014 0.0015

16 0.2922 0.3278 1.1218 0.0014 0.0015
18 0.2959 0.3356 1.1342 0.0014 0.0015
20 0.3029 0.3437 1.1345 0.0015 0.0015
22 0.3075 0.3530 1.1480 0.0015 0.0015
24 0.3129 0.3597 1.1495 0.0015 0.0015
26 0.3154 0.3651 1.1578 0.0015 0.0015
28 0.3224 0.3714 1.1522 0.0015 0.0015
30 0.3259 0.3788 1.1624 0.0015 0.0015
32 0.3298 0.3833 1.1621 0.0015 0.0015

34 0.3346 0.3903 1.1666 0.0015 0.0015
36 0.3405 0.3960 1.1632 0.0015 0.0015
38 0.3436 0.4020 1.1699 0.0015 0.0016
40 0.3463 0.4071 1.1753 0.0015 0.0016
42 0.3519 0.4125 1.1720 0.0015 0.0016

44 0.3564 0.4161 1.1673 0.0015 0.0016
46 0.3597 0.4225 1.1746 0.0015 0.0016

48 0.3622 0.4276 1.1806 0.0015 0.0016
50 0.3670 0.4308 1.1739 0.0015 0.0016

Table B.14: Simulation Results for Uniform Populations with 0 1.2 and k 5
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V PCSbem pCSavc Ratio s.e. PCSbem s.e. PCavc
2 0.6676 0.7039 1.0543 0.0015 0.0014
4 0.7411 0.7897 1.0655 0.0014 0.0013
6 0.7896 0.8407 1.0648 0.0013 0.0012
8 0.8268 0.8750 1.0583 0.0012 0.0010
10 0.8543 0.9013 1.0550 0.0011 0.0009
12 0.8776 0.9214 1.0500 0.0010 0.0009
14 0.8957 0.9360 1.0450 0.0010 0.0008
16 0.9113 0.9483 1.0405 0.0009 0.0007
18 0.9238 0.9582 1.0372 0.0008 0.0006
20 0.9350 0.9658 1.0329 0.0008 0.0006
22 0.9441 0.9723 1.0299 0.0007 0.0005
24 0.9524 0.9769 1.0258 0.0007 0.0005
26 0.9578 0.9811 1.0243 0.0006 0.0004
28 0.9630 0.9836 1.0214 0.0006 0.0004
30 0.9680 0.9870 1.0197 0.0006 0.0004
32 0.9723 0.9893 1.0174 0.0005 0.0003
34 0.9758 0.9913 1.0159 0.0005 0.0003
36 0.9791 0.9922 1.0134 0.0005 0.0003
38 0.9817 0.9937 1.0122 0.0004 0.0003
40 0.9835 0.9945 1.0112 0.0004 0.0002
42 0.9851 0.9950 1.0101 0.0004 0.0002
44 0.9873 0.9959 1.0087 0.0004 0.0002
46 0.9888 0.9968 1.0081 0.0003 0.0002
48 0.9903 0.9971 1.0069 0.0003 0.0002
50 0.9910 0.9974 1.0065 0.0003 0.0002

Table B.15: Simulation Results for Uniform Populations with 0 = 2.0 and k 2
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V PCSbe  PCavc Ratio s.e. PCSbem s.e. PCS v

2 0.5003 0.5866 1.1725 0.0016 0.0016
4 0.5936 0.6521 1.0986 0.0016 0.0015
6 0.6460 0.7140 1.1052 0.0015 0.0014
8 0.6870 0.7626 1.1100 0.0015 0.0013
10 0.7266 0.8000 1.1009 0.0014 0.0013
12 0.7575 0.8316 1.0978 0.0014 0.0012
14 0.7826 0.8562 1.0940 0.0013 0.0011
16 0.8079 0.8787 1.0876 0.0012 0.0010
18 0.8274 0.8960 1.0830 0.0012 0.0010
20 0.8447 0.9104 1.0778 0.0011 0.0009
22 0.8618 0.9245 1.0728 0.0011 0.0008
24 0.8749 0.9340 1.0675 0.0010 0.0008
26 0.8874 0.9436 1.0633 0.0010 0.0007
28 0.8995 0.9515 1.0579 0.0010 0.0007
30 0.9080 0.9576 1.0546 0.0009 0.0006
32 0.9174 0.9633 1.0500 0.0009 0.0006
34 0.9256 0.9680 1.0459 0.0008 0.0006
36 0.9331 0.9725 1.0423 0.0008 0.0005
38 0.9388 0.9760 1.0396 0.0008 0.0005
40 0.9445 0.9795 1.0370 0.0007 0.0004
42 0.9499 0.9819 1.0336 0.0007 0.0004
44 0.9542 0.9846 1.0319 0.0007 0.0004
46 0.9582 0.9867 1.0298 0.0006 0.0004

48 0.9620 0.9880 1.0271 0.0006 0.0003
50 0.9660 0.9894 1.0243 0.0006 0.0003

Table B.16: Simulation Results for Uniform Populations with 0 - 2.0 and k 3
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V PCSbe m pCSavc Ratio s.e. PCSbem s.e. pCSavc

2 0.4009 0.4967 1.2391 0.0016 0.0016
4 0.4875 0.5469 1.1218 0.0016 0.0016
6 0.5323 0.6157 1.1566 0.0016 0.0015
8 0.5788 0.6658 1.1503 0.0016 0.0015

10 0.6154 0.7075 1.1496 0.0015 0.0014
12 0.6515 0.7446 1.1429 0.0015 0.0014
14 0.6799 0.7760 1.1414 0.0015 0.0013
16 0.7080 0.8028 1.1339 0.0014 0.0013
18 0.7314 0.8259 1.1291 0.0014 0.0012
20 0.7532 0.8466 1.1241 0.0014 0.0011
22 0.7755 0.8650 1.1154 0.0013 0.0011
24 0.7912 0.8790 1.1110 0.0013 0.0010
26 0.8083 0.8920 1.1035 0.0012 0.0010
28 0.8217 0.9054 1.1019 0.0012 0.0009
30 0.8359 0.9141 1.0935 0.0012 0.0009
32 0.8483 0.9242 1.0894 0.0011 0.0008
34 0.8604 0.9324 1.0836 0.0011 0.0008
36 0.8708 0.9396 1.0790 0.0011 0.0008
38 0.8800 0.9457 1.0747 0.0010 0.0007
40 0.8892 0.9526 1.0713 0.0010 0.0007
42 0.8984 0.9570 1.0652 0.0010 0.0006
44 0.9060 0.9620 1.0619 0.0009 0.0006
46 0.9123 0.9659 1.0588 0.0009 0.0006
48 0.9184 0.9683 1.0543 0.0009 0.0006
50 0.9243 0.9731 1.0527 0.0008 0.0005

Table B.17: Simulation Results for Uniform Populations with 0 = 2.0 and k 4
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V PCSbe m pCSavc Ratio s.e. PCSbe m s.e. pCSavc

2 0.3337 0.4289 1.2852 0.0015 0.0016
4 0.4081 0.4722 1.1570 0.0016 0.0016
6 0.4513 0.5375 1.1911 0.0016 0.0016
8 0.4940 0.5882 1.1907 0.0016 0.0016
10 0.5293 0.6304 1.1910 0.0016 0.0015
12 0.5634 0.6688 1.1871 0.0016 0.0015
14 0.5924 0.7028 1.1863 0.0016 0.0014
16 0.6207 0.7317 1.1789 0.0015 0.0014
18 0.6457 0.7576 1.1732 0.0015 0.0014
20 0.6689 0.7801 1.1662 0.0015 0.0013
22 0.6921 0.8025 1.1596 0.0015 0.0013
24 0.7105 0.8196 1.1536 0.0014 0.0012
26 0.7294 0.8353 1.1452 0.0014 0.0012
28 0.7467 0.8519 1.1409 0.0014 0.0011
30 0.7610 0.8643 1.1358 0.0013 0.0011
32 0.7766 0.8774 1.1298 0.0013 0.0010
34 0.7905 0.8872 1.1223 0.0013 0.0010
36 0.8043 0.8979 1.1165 0.0013 0.0010
38 0.8158 0.9073 1.1122 0.0012 0.0009
40 0.8267 0.9150 1.1069 0.0012 0.0009
42 0.8368 0.9235 1.1036 0.0012 0.0008
44 0.8476 0.9305 1.0978 0.0011 0.0008
46 0.8564 0.9365 1.0935 0.0011 0.0008
48 0.8650 0.9412 1.0880 0.0011 0.0007
50 0.8732 0.9471 1.0847 0.0011 0.0007

Table B.18: Simulation Results for Uniform Populations with 0 = 2.0 and k 5
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V PCShem PCavc Ratio s.e. PCSbe  s.e. PCSavc
2 0.5438 0.5533 1.0175 0.0016 0.0016
4 0.5660 0.5762 1.0179 0.0016 0.0016
6 0.5826 0.5940 1.0196 0.0016 0.0016
8 0.5957 0.6098 1.0237 0.0016 0.0015
10 0.6082 0.6238 1.0257 0.0015 0.0015
12 0.6181 0.6351 1.0275 0.0015 0.0015
14 0.6285 0.6461 1.0281 0.0015 0.0015
16 0.6379 0.6565 1.0292 0.0015 0.0015
18 0.6458 0.6662 1.0316 0.0015 0.0015
20 0.6536 0.6732 1.0300 0.0015 0.0015
22 0.6615 0.6813 1.0299 0.0015 0.0015
24 0.6678 0.6888 1.0315 0.0015 0.0015
26 0.6745 0.6957 1.0314 0.0015 0.0015
28 0.6802 0.7030 1.0335 0.0015 0.0014
30 0.6862 0.7088 1.0329 0.0015 0.0014
32 0.6923 0.7145 1.0321 0.0015 0.0014
34 0.6980 0.7201 1.0316 0.0015 0.0014
36 0.7039 0.7258 1.0312 0.0014 0.0014
38 0.7092 0.7315 1.0313 0.0014 0.0014
40 0.7146 0.7374 1.0319 0.0014 0.0014
42 0.7201 0.7430 1.0318 0.0014 0.0014
44 0.7227 0.7481 1.0351 0.0014 0.0014
46 0.7276 0.7530 1.0349 0.0014 0.0014
48 0.7325 0.7572 1.0337 0.0014 0.0014
50 0.7371 0.7613 1.0328 0.0014 0.0013

Table B.19: Simulation Results for Gamma Populations with 0 = 1.2 and k 2
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V PCSb em PCSavc Ratio s.e. PCSb e m s.e. PCSvC

2 0.3742 0.3863 1.0323 0.0015 0.0015
4 0.3974 0.4071 1.0243 0.0015 0.0016
6 0.4112 0.4241 1.0313 0.0016 0.0016
8 0.4211 0.4392 1.0429 0.0016 0.0016
10 0.4340 0.4531 1.0441 0.0016 0.0016
12 0.4420 0.4648 1.0515 0.0016 0.0016
14 0.4506 0.4752 1.0547 0.0016 0.0016
16 0.4608 0.4853 1.0532 0.0016 0.0016
18 0.4689 0.4962 1.0584 0.0016 0.0016
20 0.4740 0.5048 1.0650 0.0016 0.0016
22 0.4832 0.5132 1.0621 0.0016 0.0016
24 0.4898 0.5222 1.0662 0.0016 0.0016
26 0.4958 0.5296 1.0682 0.0016 0.0016
28 0.5020 0.5369 1.0696 0.0016 0.0016

30 0.5076 0.5432 1.0700 0.0016 0.0016
32 0.5140 0.5500 1.0700 0.0016 0.0016
34 0.5199 0.5567 1.0708 0.0016 0.0016
36 0.5256 0.5627 1.0707 0.0016 0.0016
38 0.5309 0.5693 1.0723 0.0016 0.0016
40 0.5375 0.5758 1.0712 0.0016 0.0016
42 0.5435 0.5828 1.0722 0.0016 0.0016
44 0.5481 0.5882 1.0732 0.0016 0.0016
46 0.5538 0.5944 1.0732 0.0016 0.0016
48 0.5585 0.5995 1.0734 0.0016 0.0016
50 0.5628 0.6047 1.0744 0.0016 0.0015

Table B.20: Simulation Results for Gamma Populations with 0 = 1.2 and k 3
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V PCSbem PCSavc Ratio s.e. PCSbem s.e. PCSavc
2 0.2863 0.2962 1.0346 0.0014 0.0014
4 0.3069 0.3180 1.0361 0.0015 0.0015
6 0.3153 0.3328 1.0558 0.0015 0.0015
8 0.3263 0.3445 1.0557 0.0015 0.0015
10 0.3355 0.3559 1.0607 0.0015 0.0015
12 0.3431 0.3687 1.0745 0.0015 0.0015
14 0.3505 0.3758 1.0722 0.0015 0.0015
16 0.3573 0.3847 1.0765 0.0015 0.0015
18 0.3637 0.3930 1.0806 0.0015 0.0015
20 0.3696 0.4008 1.0844 0.0015 0.0016
22 0.3755 0.4068 1.0832 0.0015 0.0016
24 0.3805 0.4145 1.0896 0.0015 0.0016
26 0.3862 0.4218 1.0922 0.0015 0.0016
28 0.3924 0.4283 1.0916 0.0015 0.0016

30 0.3977 0.4354 1.0947 0.0015 0.0016
32 0.4028 0.4419 1.0970 0.0016 0.0016

34 0.4081 0.4481 1.0980 0.0016 0.0016
36 0.4129 0.4538 1.0992 0.0016 0.0016
38 0.4170 0.4598 1.1027 0.0016 0.0016
40 0.4225 0.4654 1.1016 0.0016 0.0016
42 0.4265 0.4710 1.1045 0.0016 0.0016

44 0.4312 0.4773 1.1071 0.0016 0.0016
46 0.4357 0.4831 1.1089 0.0016 0.0016
48 0.4406 0.4888 1.1093 0.0016 0.0016
50 0.4445 0.4946 1.1126 0.0016 0.0016

Table B.21: Simulation Results for Gamma Populations with 0 1.2 and k 4
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v PCSbem PCSa-c Ratio s.e. PCSb s.e. PCSavc
2 0.2315 0.2393 1.0337 0.0013 0.0013
4 0.2485 0.2589 1.0419 0.0014 0.0014
6 0.2560 0.2705 1.0565 0.0014 0.0014
8 0.2647 0.2801 1.0579 0.0014 0.0014

10 0.2735 0.2907 1.0630 0.0014 0.0014
12 0.2802 0.3025 1.0794 0.0014 0.0015
14 0.2850 0.3094 1.0857 0.0014 0.0015
16 0.2914 0.3166 1.0862 0.0014 0.0015
18 0.2973 0.3246 1.0919 0.0014 0.0015
20 0.3022 0.3308 1.0947 0.0015 0.0015
22 0.3072 0.3365 1.0953 0.0015 0.0015
24 0.3115 0.3431 1.1014 0.0015 0.0015
26 0.3168 0.3492 1.1024 0.0015 0.0015
28 0.3214 0.3548 1.1041 0.0015 0.0015
30 0.3268 0.3612 1.1053 0.0015 0.0015
32 0.3298 0.3667 1.1119 0.0015 0.0015

34 0.3337 0.3732 1.1183 0.0015 0.0015
36 0.3380 0.3796 1.1231 0.0015 0.0015
38 0.3424 0.3844 1.1227 0.0015 0.0015
40 0.3464 0.3893 1.1240 0.0015 0.0015
42 0.3516 0.3948 1.1228 0.0015 0.0015
44 0.3551 0.4001 1.1267 0.0015 0.0015
46 0.3586 0.4054 1.1307 0.0015 0.0016
48 0.3625 0.4103 1.1318 0.0015 0.0016
50 0.3665 0.4154 1.1334 0.0015 0.0016

Table B.22: Simulation Results for Gamma Populations with 0 = 1.2 and k 5

109



V PCSbem PCSavc Ratio s.e. PCSbem s.e. PCS v

2 0.6672 0.7005 1.0499 0.0015 0.0014
4 0.7405 0.7782 1.0509 0.0014 0.0013
6 0.7895 0.8267 1.0472 0.0013 0.0012
8 0.8254 0.8608 1.0429 0.0012 0.0011

10 0.8553 0.8871 1.0372 0.0011 0.0010
12 0.8782 0.9077 1.0336 0.0010 0.0009
14 0.8959 0.9242 1.0315 0.0010 0.0008
16 0.9120 0.9377 1.0282 0.0009 0.0008
18 0.9248 0.9481 1.0252 0.0008 0.0007
20 0.9353 0.9569 1.0230 0.0008 0.0006
22 0.9446 0.9636 1.0202 0.0007 0.0006
24 0.9517 0.9700 1.0192 0.0007 0.0005
26 0.9578 0.9747 1.0177 0.0006 0.0005
28 0.9633 0.9785 1.0157 0.0006 0.0005
30 0.9681 0.9819 1.0142 0.0006 0.0004
32 0.9722 0.9846 1.0128 0.0005 0.0004
34 0.9760 0.9872 1.0115 0.0005 0.0004
36 0.9790 0.9890 1.0102 0.0005 0.0003
38 0.9815 0.9905 1.0091 0.0004 0.0003
40 0.9842 0.9917 1.0077 0.0004 0.0003
42 0.9861 0.9930 1.0070 0.0004 0.0003
44 0.9878 0.9940 1.0063 0.0003 0.0002
46 0.9893 0.9948 1.0056 0.0003 0.0002
48 0.9905 0.9955 1.0050 0.0003 0.0002
50 0.9917 0.9961 1.0044 0.0003 0.0002

Table B.23: Simulation Results for Gamma Populations with 0 2.0 and k 2
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V PCSbem PCSavc Ratio s.e. PCSbe m s.e. PCSavc
2 0.5013 0.5499 1.0969 0.0016 0.0016
4 0.5948 0.6367 1.0704 0.0016 0.0015
6 0.6463 0.6997 1.0826 0.0015 0.0014

8 0.6881 0.7473 1.0860 0.0015 0.0014
10 0.7282 0.7860 1.0793 0.0014 0.0013
12 0.7588 0.8170 1.0767 0.0014 0.0012
14 0.7843 0.8431 1.0750 0.0013 0.0012
16 0.8093 0.8649 1.0687 0.0012 0.0011

18 0.8295 0.8838 1.0656 0.0012 0.0010
20 0.8464 0.8999 1.0632 0.0011 0.0009
22 0.8628 0.9137 1.0591 0.0011 0.0009
24 0.8765 0.9256 1.0560 0.0010 0.0008
26 0.8879 0.9352 1.0532 0.0010 0.0008
28 0.8996 0.9434 1.0487 0.0010 0.0007
30 0.9093 0.9505 1.0453 0.0009 0.0007
32 0.9178 0.9567 1.0424 0.0009 0.0006
34 0.9259 0.9625 1.0395 0.0008 0.0006
36 0.9330 0.9675 1.0371 0.0008 0.0006
38 0.9392 0.9714 1.0342 0.0008 0.0005
40 0.9455 0.9752 1.0314 0.0007 0.0005
42 0.9504 0.9784 1.0294 0.0007 0.0005

44 0.9550 0.9807 1.0268 0.0007 0.0004
46 0.9588 0.9831 1.0254 0.0006 0.0004
48 0.9628 0.9850 1.0231 0.0006 0.0004
50 0.9661 0.9866 1.0211 0.0006 0.0004

Table B.24: Simulation Results for Gamma Populations with 0 = 2.0 and k 3
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V PCSbem PC5 avc Ratio s.e. pCSbem s.e. PCavc
2 0.4008 0.4479 1.1174 0.0016 0.0016
4 0.4874 0.5372 1.1023 0.0016 0.0016
6 0.5324 0.5993 1.1256 0.0016 0.0016
8 0.5803 0.6506 1.1211 0.0016 0.0015
10 0.6175 0.6945 1.1247 0.0015 0.0015
12 0.6508 0.7311 1.1233 0.0015 0.0014
14 0.6800 0.7624 1.1211 0.0015 0.0013
16 0.7072 0.7901 1.1172 0.0014 0.0013
18 0.7317 0.8145 1.1132 0.0014 0.0012
20 0.7528 0.8356 1.1099 0.0014 0.0012
22 0.7729 0.8536 1.1045 0.0013 0.0011
24 0.7902 0.8702 1.1013 0.0013 0.0011
26 0.8065 0.8849 1.0973 0.0012 0.0010
28 0.8214 0.8973 1.0924 0.0012 0.0010
30 0.8354 0.9085 1.0876 0.0012 0.0009
32 0.8470 0.9183 1.0842 0.0011 0.0009
34 0.8589 0.9265 1.0787 0.0011 0.0008
36 0.8696 0.9349 1.0752 0.0011 0.0008
38 0.8786 0.9417 1.0718 0.0010 0.0007
40 0.8891 0.9476 1.0658 0.0010 0.0007
42 0.8971 0.9533 1.0626 0.0010 0.0007
44 0.9050 0.9582 1.0587 0.0009 0.0006
46 0.9121 0.9626 1.0554 0.0009 0.0006
48 0.9188 0.9660 1.0513 0.0009 0.0006
50 0.9246 0.9696 1.0486 0.0008 0.0005

Table B.25: Simulation Results for Gamma Populations with 0 = 2.0 and k 4
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V PCSbem pCSavc Ratio s.e. PCSbe m s.e. PCSavc

2 0.3334 0.3758 1.1273 0.0015 0.0015
4 0.4086 0.4594 1.1243 0.0016 0.0016
6 0.4519 0.5211 1.1530 0.0016 0.0016
8 0.4946 0.5728 1.1581 0.0016 0.0016
10 0.5330 0.6178 1.1591 0.0016 0.0015
12 0.5659 0.6562 1.1595 0.0016 0.0015
14 0.5945 0.6898 1.1605 0.0016 0.0015
16 0.6210 0.7189 1.1578 0.0015 0.0014
18 0.6477 0.7469 1.1533 0.0015 0.0014
20 0.6702 0.7708 1.1501 0.0015 0.0013
22 0.6913 0.7915 1.1449 0.0015 0.0013
24 0.7105 0.8124 1.1434 0.0014 0.0012
26 0.7294 0.8297 1.1375 0.0014 0.0012
28 0.7457 0.8460 1.1344 0.0014 0.0011
30 0.7617 0.8606 1.1298 0.0013 0.0011
32 0.7757 0.8726 1.1249 0.0013 0.0011

34 0.7900 0.8841 1.1190 0.0013 0.0010
36 0.8037 0.8946 1.1131 0.0013 0.0010
38 0.8151 0.9041 1.1092 0.0012 0.0009
40 0.8259 0.9130 1.1054 0.0012 0.0009
42 0.8370 0.9204 1.0995 0.0012 0.0009

44 0.8474 0.9275 1.0946 0.0011 0.0008
46 0.8567 0.9340 1.0902 0.0011 0.0008
48 0.8658 0.9399 1.0857 0.0011 0.0008
50 0.8733 0.9449 1.0820 0.0011 0.0007

Table B.26: Simulation Results for Gamma Populations with 0 = 2.0 and k 5
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V PCShem PCSavc Ratio s.e. pCSbem s.e. PCSav
2 0.5453 0.5566 1.0208 0.0016 0.0016
4 0.5671 0.5920 1.0438 0.0016 0.0016
6 0.5838 0.6148 1.0532 0.0016 0.0015
8 0.5988 0.6357 1.0615 0.0016 0.0015
10 0.6100 0.6514 1.0679 0.0015 0.0015
12 0.6215 0.6661 1.0717 0.0015 0.0015
14 0.6309 0.6782 1.0749 0.0015 0.0015
16 0.6395 0.6901 1.0790 0.0015 0.0015
18 0.6479 0.7034 1.0857 0.0015 0.0014
20 0.6564 0.7132 1.0866 0.0015 0.0014
22 0.6631 0.7224 1.0894 0.0015 0.0014
24 0.6697 0.7320 1.0932 0.0015 0.0014
26 0.6764 0.7408 1.0952 0.0015 0.0014
28 0.6839 0.7503 1.0971 0.0015 0.0014
30 0.6896 0.7576 1.0986 0.0015 0.0014
32 0.6960 0.7642 1.0981 0.0015 0.0013
34 0.7018 0.7716 1.0996 0.0014 0.0013
36 0.7070 0.7785 1.1013 0.0014 0.0013
38 0.7118 0.7854 1.1034 0.0014 0.0013
40 0.7159 0.7907 1.1046 0.0014 0.0013
42 0.7209 0.7955 1.1036 0.0014 0.0013
44 0.7250 0.8016 1.1056 0.0014 0.0013
46 0.7293 0.8073 1.1070 0.0014 0.0012
48 0.7332 0.8122 1.1076 0.0014 0.0012
50 0.7387 0.8179 1.1072 0.0014 0.0012

Table B.27: Simulation Results for Bernoulli Populations with 0 1.2 and k 2
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V PCShe m pCSavc Ratio s.e. pCSbem s.e.. PCavc
2 0.3744 0.3908 1.0438 0.0015 0.0015
4 0.3996 0.4244 1.0621 0.0015 0.0016
6 0.4126 0.4435 1.0748 0.0016 0.0016
8 0.4240 0.4647 1.0961 0.0016 0.0016

10 0.4357 0.4804 1.1026 0.0016 0.0016
12 0.4446 0.4948 1.1128 0.0016 0.0016
14 0.4523 0.5069 1.1208 0.0016 0.0016
16 0.4616 0.5204 1.1275 0.0016 0.0016
18 0.4690 0.5317 1.1337 0.0016 0.0016
20 0.4770 0.5442 1.1407 0.0016 0.0016
22 0.4841 0.5525 1.1413 0.0016 0.0016
24 0.4910 0.5656 1.1519 0.0016 0.0016
26 0.4984 0.5740 1.1518 0.0016 0.0016
28 0.5041 0.5845 1.1595 0.0016 0.0016
30 0.5106 0.5930 1.1613 0.0016 0.0016
32 0.5161 0.6017 1.1658 0.0016 0.0015
34 0.5223 0.6117 1.1711 0.0016 0.0015
36 0.5279 0.6196 1.1738 0.0016 0.0015
38 0.5338 0.6277 1.1759 0.0016 0.0015
40 0.5382 0.6337 1.1774 0.0016 0.0015
42 0.5436 0.6408 1.1788 0.0016 0.0015
44 0.5487 0.6483 1.1814 0.0016 0.0015
46 0.5536 0.6564 1.1857 0.0016 0.0015
48 0.5581 0.6623 1.1868 0.0016 0.0015
50 0.5635 0.6698 1.1885 0.0016 0.0015

Table B.28: Simulation Results for Bernoulli Populations with 0 1.2 and k 3
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Appendix C

PROGRAM LISTINGS

c THIS IS PROGRAM FOR MULTINOMIAL SELECTION PROBLEM. METHOD I

c IS BECHHOFER'S METHOD (BEM). METHOD II IS OUR NEW APPROACH

c MAKING ALL VECTOR COMPARISONS (AVC). BEST POPULATION IS

c MODELED AS Xl. SETUP TO USE THE FOLLOWING DISTRIBUTIONS:

C

c EXPONENTIAL - SET LAMBDA=1.0, VARY MU TO MAINTAIN THETA

c CONTINUOUS UNIFORM - SET A=l, VARY B TO MAINTAIN THETA

c GAMMA - SET Al=A2=3.0, B2=1.0, VARY Bi TO MAINTAIN THETA
c

c THIS IS REVISED VERSION SORTING AND THEN COMPARING EACH VALUE

c AGAINST ALL VALUES FROM REMAINING POPULATIONS INSTEAD OF

c ACTUALLY FORMING ALL V-K PSEUDO-REPLICATIONS.

c

c SETUP FOR MAX OF 5 POPULATIONS AND 100 VECTORS.
c

c VARIABLE TABLE

c

c NAME DESCRIPTION

c

c NREPS NUMBER OF REPLICATIONS

C
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c NVECT NUMBER OF INDEPENDENT VECTORS TO SIMULATE.

c SET UP FOR MAXIMUM OF 100.
C

c NPOP NUMBER OF POPULATIONS. SET UP FOR MAXIMUM

¢cOF 5.
C

c LAMBDA EXPONENTIAL RATE FOR POPULATION 1, WHICH IS

c ALWAYS MODELED AS BEST SYSTEM. SET TO 1.0.
C

c MU EXPONENTIAL RATE FOR POPULATIONS OTHER THAN

c 1. USE OF A SINGLE MU ASSUMES METHOD I

c l.f.c. VARIED WITH INCREASING K TO MAINTAIN
c DESIRED THETA = P(X>Y)/(l-P(X>Y)/K-1).
C

c A RIGHT END POINT FOR CONTINUOUS UNIFORM DIST
c FOR POPULATION 1. SET TO 1.0.
C

c B RIGHT END POINT FOR CONTINUOUS UNIFORM DIST

c FOR POPULATIONS OTHER THAN 1. VARIED WITH

c INCREASING K TO MAINTAIN DESIRED THETA.
c

c JXI(3)-JX5(3) RANDOM NUMBER SEEDS FOR USE WITH L'ECUYER'S

c GENERATOR. SEPARATE STREAM FOR EACH POP.
C

c RUNF(JX) CALL TO L'ECUYER'S GENERATOR.
c

c PCS1(V) PCS FOR METHOD I FOR V = THE NUMBER OF

c VECTORS, V=1,2,...,100.
C

c PCS2(V) PCS FOR METHOD II FOR V.

C

c SE1(V) STANDARD ERROR FOR PCS1(V).
C

C SE2(V) STANDARD ERROR FOR PCS2(V).

C

c RTO(V) RATIO OF PCS2(V)/PCS1(V).
C

c NWIN1(L,M) NUMBER OF WINS WITH METHOD I FOR POPULATION

c L WITH M VECTORS; L=2,3,...,K; M=1,2, .. ,100.
C

C X(J,K) OBSERVATION K FROM POPULATION J.

C
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c XCNT(J) USED TO KEEP TRACK OF HOW MANY OBSERVATIONS

c FROM ALL OTHER POPULATIONS AN OBSERVATION

c FROM POPULATION J EXCEEDS.

c

c XJ(JM) USED TO STORE HOW MANY OBSERVATIONS IN POP M

c ARE EXCEEDED BY CURRENT OBSERVATION FROM

c POP J. PRODUCT OF XJ(J,M) FOR M=2,...,K;

c M NOT EQUAL TO K RESULTS IN TOTAL XCNT(J)

c FOR A SINGLE OBSERVATION FROM POP J.

c
c FC(J) SUM OF XCNT(J) OVER ALL OBSERVATIONS FOR

c POP J.
C

PROGRAM MSP

c
c

REAL LAMBDA,MU,X(5,100),XJ(5,5),XCNT(5),FC(5)

REAL PCS1(100),PCS2(100),SE1(100),SE2(100),RTO(100)

INTEGER*4 JX1(3),JX2(3),JX3(3),JX4(3),JX5(3)

INTEGER*4 JX6(3),JX7(3),JX8(3),JX9(3),JX1O(3)
INTEGER NWIN1(5,100)

c

c FILES TO OUTPUT RESULTS TO

c

OPEN(4,FILE='exk5t20.dat',STATUS='UNKNOWN')

c

c INITIALIZE VARIABLES

c
c IDIST=l IF EXPONENTIAL, 2 IF CONTINUOUS UNIFORM

c 3 IF GAMMA
c

NREPS=100000
NVECT=2

NPOP=5

LAMBDA=1.0
MU=1.5885

A=1.0

B=1.1

AX=3.0
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BX=l .3061
AY=3 .0
BY=l. 0
IDIST=l

C

c SETUP CONSTANTS FOR GAMMA RV GENERATION

c

AB=l .O/S!QRT(2*AX-1)
AR=1 .0/SQRT(2*AY-1)

BB=AX-LOG (4.0)

BR=AY-LOG (4.0)

QB=AX+1 .0/AB

QR=AY+1 .0/AR

TB=4 .5

TR=4 .5

DB=1 .0+LOG (TB)

DR=1 .0+LOG (TR)

C

c SEEDS FOR L'ECUYER'S RN GENERATOR

C

JX1 (2)=748932582

JX1 (3) =639287

JX2 (2) =64298628

JX2 (3)=196998

JX3 (2) =40689408

JX3 (3)=122595154

JX4(2) =680620100

JX4 (3) =335083118

JX5 (2) =64918046

JX5 (3)=812715188

C

5 DO 10 I=1,NVECT
PCS1(I)=0

PCS2(I)=0

10 CONTINUE

DO 2000 I=I,NREPS

DO 30 J=1,NPOP

FC(3) =0

DO 20 K=1,NVECT

NWIN1 (J,K)=0

20 CONTINUE

30 CONTINUE
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c

c RANDOM VARIATE GENERATION DONE HERE. SEPARATE SET OF RN

c STREAMS FOR EACH POPULTION.

c

IF(IDIST.EQ.2)GO TO 65

IF(IDIST.EQ.3)GO TO 81

C

c EXPONENTIAL RANDOM VARIATES

C

DO 60 K=1,NVECT

X(1,K)=-(l/LAMBDA)*LOG(1-RUNF(JX1))

X(2,K)=-(l/MU)*LOG(1-RUNF(JX2))

IF(NPOP.EQ.2)GO TO 60

X(3 ,K)=-(l/MU)*LOG(1-RUNF(3X3))

IF(NPOP.EQ.3)GO TO 60

X(4,K)=- (l/MU)*LOG(1-RUNF(JX4))

IF(NPOP.EQ.4)GO TO 60

x(5 ,K)=-(l/MU) *LOG(1-RUNF(JX5))

60 CONTINUE

GO TO 89

C

c CONTINOUS UNIFORM RANDOM VARIATES

C

65 DO 80 K=1,NVECT

X(1 ,K)=B*RUNF(JX1)

X(2,K)=A*RUNF(JX2)

IF(NPOP.EQ.2)GO TO 80

X(3 ,K)=A*RUNF(Jx3)
IF(NPOP.EQ.3)GO TO 80

X(4 ,K)=A*RUNF(JX4)

IF(NPOP.EQ.4)GO TO 80

X(5 ,K)=A*RUNF(Jx5)

80 CONTINUE

GO TO 89

C

c GAMMA RANDOM VARIATES

C

81 DO 88 K=1,NVECT

82 Ul=RUNF(JX1)

U2=RUNF (JX2)
V=AB*LOG(Ul/(1-U1))

Y=AX*EXP (V)
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Z=(U1**2) *U2

W=BB+QB*V-Y

IF (W+DB-TB*z .GE.0) THEN

XT=Y

ELSE IF(W.GE.LOG(Z))THEN

XT=Y

ELSE

GO TO 82
END IF
X(1 ,K)=BX*xT

83 Ul=RUNF(JX3)

U2=RUNF (JX4)

V=AR*LOG (Ul! (1-Ul))
Y=AY*EXP (V)

Z=(U1**2) *U2

W=BR+QR*V-Y

IF(W+DR-TR*Z.GE.0)THEN

OT=Y

ELSE IF(W.GE.LOG(Z))THEN

OT=Y

ELSE

GO TO 83

END IF
X(2,K)=BY*OT

IF(NPOP.EQ.2)GO TO 88

84 Ul=RUNF(JX5)

U2=RUNF (JX6)
V=AR*LOG(U1/(l-Ul))
Y=AY*EXP (V)

Z= (U1**2) *U2

W=BR+QR*V-Y

IF (W+DR-TR*z .GE .0)THEN

OT=Y
ELSE IF(W.GE.LOG(Z))THEN

OT=Y

ELSE

GO TO 84

END IF

X(3,K)=BY*OT

IF(NPOP.EQ.3)GO TO 88

85 Ul=RUNF(JX7)

U2=RUNF (JX8)
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V=AR*LOG(Ul/(l-Ul))

Y=AY*EXP (V)

Z=(U1**2)*U2

W=BR+QR*V-Y

IF (W+DR-TR*Z .GE .0)THEN

OT=Y

ELSE IF(W.GE.LOG(Z))THEN

OT=Y

ELSE

GO TO 85

END IF

X(4,K)=BY*OT

IF(NPOP.EQ.4)GO TO 88

86 Ul=RUNF(3X9)

U2=RUNF (JX1O)

V=AR*LOG(Ul/(l-Ul))

Y=AY*EXP (V)

Z=(U1**2) *U2

W=BR+QR*V-Y

IF (W+DR-TR*Z .GE .0)THEN

OT=Y
ELSE IF(W.GE.LOG(Z))THEN

OT=Y
ELSE

GO TO 86
END IF
X(5,K)=BY*OT

88 CONTINUE

c

c METHOD I (BEM)

c SIMPLY NEED TO COUNT NUMBER OF TIMES EACH Xi IS BEST IN

c SAME VECTOR.

c

89 DO 100 K=1,NVECT

BEST=X(1 ,K)

DO 90 J=2,NPOP

TM=AMAX1 (BEST,X(J ,K))

IF(TM.GT.BEST)BEST=TM

90 CONTINUE
DO 95 L=1,NPOP

IF(X(L,K) .EQ~.TM)NWIN1(L,K)=NWIN1(L,K)+l

95 CONTINUE
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100 CONTINUE

C

c IF BEST POPULATION (#1) WINS OUTRIGHT, INCREASE PCS BY ONE.

c IF ANOTHER POPULATION WINS, DO NOT INCREASE PCS.

c FOR TIES INCLUDING BEST POPULATION, NEED TO KEEP TRACK OF THE

c NUMBER OF TIES AND INCREASE PCS BY l/NTIES.

c

DO 105 K=2,NVECT

DO 102 J=1,NPOP

NWIN1 (J,K)=NWIN1(J,K)+NWIN1(J,K-1)

102 CONTINUE

105 CONTINUE
DO I1l K=1,NVECT

NTIES=1

DO 110 J=2,NPOP

IF(NWIN1(1,K) .LT.NWIN1(J,K))THEN

PCS1 (K)=PCS1 (K)

GO TO 111

ELSE
IF(NWIN1(1,K) .EQ.NWIN1(J,K))NTIES=NTIES+I

IF(J.EQ.NPOP)PCS1(K)=PCS1(K)+1 .0/(NTIES)

END IF

110 CONTINUE

111 CONTINUE
C

c METHOD II (AVC)

C

DO 1180 NM2=1,NVECT

CALL SORTV(NPOP,NM2 ,X)
DO 1150 K=1,NM2

DO 1148 J=1,NPOP

XCNT(J)=1

DO 1146 M=1,NPOP

DO 1142 L=1,NM2
IF(M.NE.J.AND.X(J,K) .GT.X(M,L))THEN

XJ(J,M)=NM2-(L-1)

GO TO 1145
ELSE

IF(L.EQ.NM2)XJ(J,M)=0

END IF

1142 CONTINUE

1145 IF(M.NE. J)XCNT(J)=XCNT(J)*XJ(J,M)
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1146 CONTINUE

1148 CONTINUE

DO 1149 J=1,NPOP

FC(J)=FC(J)+XCNT(J)
1149 CONTINUE

1150 CONTINUE

NT= 1

DO 1170 J=2,NPOP

IF(FC(1) .LT.FC(J))THEN
PCS2 (NM2) =PCS2 (NM2)

GO TO 1180

ELSE

IF(FC(1) .EQ.FC(J))NT=NT+1

IF(J . EQ. NPOP)PCS2 (NM2)=PCS2(NM2)+1 .0/NT

END IF

1170 CONTINUE

1180 CONTINUE

2000 CONTINUE

DO 2010 I=1,NVECT

PCS1 (I)=PCS1 (I)/REAL(NREPS)

PCS2 (I) =PCS2 (1)/REAL (NREPS)

SE1(I)=(PCS1(I)*(1.0-PCS1(I))/REAL(NREPS))**.5

SE2(I)=(PCS2(I)*(1.0-PCS2(I))/REAL(NREPS))**.5

RTO(I)=PCS2(I)/PCS1 (I)

C

c FILE 4 SETUP TO READ DIRECTLY INTO MINITAB OR OTHER PROGRAM

c

WRITE(4,2050)NPOP,I,PCS1(I),PCS2(I),RTO(I),SE1(I),E2(I)

2010 CONTINUE

2050 FORMAT(1X,2I4,2X,5(F8.6,2X))

STOP

END

SUBROUTINE SORTV (K,N,Y)

INTEGER K,N

REAL Y(5,100)

DO 30 L=1,K

DO 20 J=2,N

TEMP=Y (L, J)
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I=J-1
10 IF(I.EQ.0)GO TO 20

IF(TEMP.GT.Y(L,I))THEN

Y(L,I+1)=Y(L,I)

Y(L,I)=TEMP

I=I-1

GO TO 10

END IF

20 CONTINUE

30 CONTINUE

RETURN

END

C

FUNCTION RUNF(JX)

c L'Ecuyer's generator as given as unifl in BF&S, p. 332

C

c inputs:

c jx(2), jx(3) = two random integers with:

c 0 < jx(2) < 2147483563

c 0 < jx(3) < 2147483399

c

c outputs:

c jx(1) pseudorandom integer, 0 < jx(3) < 2147483563

c period of jx(1) is about 2.3e18

c jx(2) = pseudorandom integer, 0 < jx(2) < 2147483563

c jx(3) = pseudorandom integer, 0 < jx(2) < 2147483399

c unifl = pseudorandom real, 0. < unifl < 1.

c

INTEGER*4 JX, K

DIMENSION JX(3)

c

c get next term in the first stream = 40014*jx(2) mod 2147483563

K = JX(2)/53668

JX(2) = 40014*(JX(2) - K*53668) - K*12211

IF (JX(2) .LT. 0) JX(2) = JX(2) + 2147483563

c
c get next term in the second stream = 40692*jx(3) mod 2147483399

K = JX(3)/52774

JX(3) = 40692*(JX(3) - K*52774) - K*3791

IF (JX(3) .LT. 0) JX(3) = JX(3) + 2147483399
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C

c set jx(l) = ((jx(3) + 2147483562 - jx(2)) mod 2147483562) + 1

K = JX(3) - JX(2)

IF (K .LE. 0) K = K + 2147483562

C

c put the combination back into jx(1)
JX(1) = K

c
c put it on the interval (0.,1.)

RUNF = K*4.656613E-10

RETURN

END

c
c THIS IS PROGRAM FOR MSP USING BERNOULLI POPULATIONS.

c SETUP FOR MAX OF 5 POPULATIONS AND 50 VECTORS.

c NOTE THIS CODE BREAKS ALL TIES WITHIN A VECTOR BY A RANDOM DRAW

c RATHER THAN ASSIGNING A FRACTION OF A WIN.

c
c BERNOULLI PARAMETERS: PX = BERNOULLI SUCCESS PROBABILITY FOR

c FIRST POPULATION (ASSUMED TO BE BEST), PY = BERNOULLI SUCCESS

c PROBABILITY FOR ALL REMAINING POPULATIONS.

c
PROGRAM MNBERN

c
c

REAL PCS1(50),PCS2(50),SE1(50),SE2(50)
PARAMETER(PX=.5,PY=.4264,NREPS=10000)

INTEGER*4 JX1(3),JX2(3),JX3(3),JX4(3),JX5(3),LX(3),MX(3)

REAL X(5,50),P(5),NWIN1(5,50),NWIN2(5,50)

c
c FILES TO OUTPUT RESULTS TO

c
OPEN(4,FILE='bk5tl2.dat',STATUS='UNKNOWN')

c
NPOP=5
NVECT=50

DO 10 1=1,50

PCS1(I)=0

PCS2(I)=O
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10 CONTINUE

c

c INITIALIZE VARIABLES

c

c SEEDS FOR L'ECUYER'S RN GENERATOR
C

JXi (2) =748932582

JX1 (3) =639287

JX2 (2) =64298628

JX2 (3) =196998

JX3 (2)=40689408

JX3 (3) =122595 154

JX4 (2) =680620100
JX4 (3) =335083118

JX5 (2) =649 18046

JX5 (3)=812715188

LX (2) =427 126672

LX (3) =699944973
MX (2) =257567734

MX (3) =189120895

DO 2000 I=1,NREPS

DO 30 K=1,NVEGT

DO 20 J=1,NPOP

NWIN1(J,K)=0

NWIN2(J,K)=0
20 CONTINUE

30 CONTINUE

c RANDOM VARIATE GENERATION DONE HERE.

82 DO 87 K=1,50
IF(RUNF(JX1) .LE.PX)THEN

X(1,K)=1.0

ELSE

X(1,K)=0.0

END IF

IF(RUNF(JX2) .LE.PY)THEN
X(2,K)=1 .0

ELSE

X (2 ,K) =0.0

END IF
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IF(NPOP.EQ.2)GO TO 87

IF(RUNF(JX3).LE.PY)THEN
X(3,K)=1.0

ELSE

X(3,K)=O.O
END IF

IF(NPOP.EQ.3)GO TO 87

IF(RUNF(JX4).LE.PY)THEN

X(4,K)=1.0

ELSE

X(4,K)=O.O

END IF

IF(NPOP.EQ.4)GO TO 87
IF(RUNF(JX5).LE.PY)THEN

X(5,K)=1.0
ELSE

X(5,K)=O.O
END IF

87 CONTINUE
c

c METHOD I (BEM)

c SIMPLY NEED TO COUNT NUMBER OF TIMES EACH Xi IS BEST IN

c SAME VECTOR. NOTE WITH USE OF BERNOULLI POPULATIONS HAVE

c INTRODUCED ALOT OF TIES THAT MUST BE DEALT WITH.
c

c THIS SECTION ADDED TO TAKE CARE OF TIES WITH BERNOULLI POPS.

c SUM IS ACROSS EACH VECTOR. BASIC LOGIC IN THIS SECTION IS IF

c THERE ARE ANY TIES, DRAW A RANDOM NUMBER (PRN BELOW) AND ASSIGN

c FIRST FRACTION (0 - 1/SUM) BASED ON NUMBER OF TIES TO FIRST POP

c TIED AS WINNING (COULD BE ALL POPULATIONS TIED AT ZERO) AND

c NEXT FRACTION (1/SUM-2/SUM) TO NEXT WINNING POPULATION, ETC.
c

c 10 - FLAG SET TO 1 IF SUM IS ZERO, LEFT AT ZERO OTHERWISE

c Ni - COUNTER FOR NUMBER OF POPULATIONS WITH A 'I' IN A VECTOR

c PRN - RANDOM NUMBER USED TO PICK SINGLE BEST POP FOR VECTOR

c
101 DO 106 K=1,NVECT

SUM=O

IO=O

N1=0

DO 103 L=1,NPOP

SUM=SUM+X(L,K)
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103 CONTINUE
IF(SUM.EQ.O)THEN

SUM=REAL(NPOP)
IO=l

END IF

PRN=RUNF(LX)

IF(SUM.EQ.i)PRN=O
DO 104 L=i,NPOP

IF(X(L,K).EQ.O.AND.IO.EQ.O)GO TO 104

Ni=N1+1

IF(PRN.LT.(Ni/SUM))THEN

NWINi(L,K)=NWINi(L,K)+i

GO TO 106

END IF
104 CONTINUE

106 CONTINUE

DO 108 K=2,NVECT
DO 107 J=i,NPOP

NWINI(J,K)=NWINI(J,K)+NWINI(J,K-1)

107 CONTINUE

108 CONTINUE

c

c IF BEST POPULATION (#l) WINS OUTRIGHT, INCREASE PCS BY ONE.
c IF ANOTHER POPULATION WINS, DO NOT INCREASE PCS.
c FOR TIES INCLUDING BEST POPULATION, NEED TO KEEP TRACK OF THE
c NUMBER OF TIES AND INCREASE PCS BY u/NTIES.

c

DO iii K=i,NVECT

NTIES=i

DO 110 J=2,NPOP

IF(NWINI(I,K).LT.NWINI(J,K))GO TO iii
IF(NWINi(I,K).EQ.NWINI(J,K))NTIES=NTIES+I

IF(J.EQ.NPOP)PCSI(K)=PCSI(K)+I.0/REAL(NTIES)

110 CONTINUE

iii CONTINUE
c
c METHOD II (AVC)
c COMPARE EACH Xi WITH EVERY POSSIBLE VECTOR V**K
c COMPARISONS. THE LOOP INDEXES GET RATHER CONFUSING
c HERE, BUT ACTUALLY FORM ALL V**K POSSIBLE PSEDUO-VECTORS
c FOR AVC. TO PARALLEL BEM IN TERMS OF BREAKING TIES NEED
c TO CONSTRUCT EACH PSEUDO-VECTOR.

129



c

GO TO(200,300,400,500) (NPOP-1)

C

c LOOPS FOR NPOP=2

C

200 DO 291 NS=1,NVECT

DO 290 L2=1,NS

DO 220 L1=1,NS
IF(L2.LT.NS.AND.L1.LT.NS)GO TO 220

SUM=0

10=0

Ni1=0

P(1)=X(1,L2)

P(2)=X(2,Ll)

SUM=P (1)+P (2)

IF(SUM.EQ.0)THEN

SUM=REAL (NPOP)

10=1

END IF

PRN=RUNF (Mx)
IF(SUM.EQ. 1)PRN=0
DO 210 L=1,NPOP

IF(P(L).EcQ.0.AND.I0.EQ.0)GO TO 210
N1=N1+l

IF(PRN.LT. (N1/SUM))THEN
NWIN2 (L ,NS)=NWTN2 (L ,NS)+l

GO TO 220

END IF
210 CONTINUE

220 CONTINUE
290 CONTINUE

291 CONTINUE

GO TO 1100
C

c LOOPS FOR NPOP=3

C

300 DO 391 NS=1,NVECT

DO 390 L3=1,NS
DO 330 L2=1,NS

DO 320 L1=1,NS
IF(L3.LT.NS.AND.L2.LT.NS.AND.L1.LT.NS)GO TO 320
SUM=0
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10=0

N1=0
P (1)=X (1 ,L3)

P(2)=X(2,L2)

P(3)=X(3,L1)

SUM=P (1) +P (2) +P (3)

IF(SUM.EQ.0)THEN

SUM=REAL (NPOP)

10=1

END IF
PRN=RUNF (MX)

IF(SUM.EQ. 1)PRN=0

DO 310 L=1,NPOP
TF(P(L).EQ.0.AND.I0.EQ.0)GO TO 310

N1=N1+1

IF(PRN.LT. (N1/SUM))THEN
NWIN2(L,NS)=NWIN2(L,NS)i-

GO TO 320

END IF
310 CONTINUE

320 CONTINUE

330 CONTINUE
390 CONTINUE

391 CONTINUE

GO TO 1100

c LOOPS FOR NPOP=4

400 DO 491 NS=1,NVECT

DO 490 L4=1,NS

DO 440 L3=1,NS
DO 430 L2=1,NS

DO 420 L1=1,NS

IF(L4.LT.NS.AND.L3.LT.NS.AND.
+ L2.LT.NS.AND.L1.LT.NS)GO TO 420

SUM=0

10=0

N1=0

P(1)=X(1 ,L4)
P (2) =X (2,L3

P(3)=X(3,L2)

P(4)=X(4,L1)
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SUM=P (1) +P (2) +P (3) +P (4)

IF(SUM.EQ.0)THEN

SUM=REAL (NPOP)
10=1

END IF

PRN=RUNF (Mx)
IF(SUM.E4. 1)PRN=0

DO 410 L=1,NPOP

IF(P(L).EQ.0.AND.I0.EQ.0)GO TO 410

Ni =N 1+1

IF(PRN.LT. (N1/SUM))THEN
NWIN2(L ,NS)=NWIN2 (L,NS)+1

GO TO 420

END IF

410 CONTINUE

420 CONTINUE

430 CONTINUE

440 CONTINUE

490 CONTINUE

491 CONTINUE

GO TO 1100

c LOOPS FOR NPOP=5

500 DO 591 NS=1,NVECT

DO 590 L5=1,NS

DO 580 L4=1,NS

DO 570 L3=1,NS

DO 530 L2=1,NS

DO 520 L1=1,NS
IF(L5.LT.NS.AND.L4.LT.NS.AND.L3.LT.NS.

+ AND.L2.LT.NS.AND.L1.LT.NS)GO TO 520

SUM~0

I0=0

N 1=0

P(1)=X(1 ,L5)

P(2)=X(2,L4)

P(3)=X(3,L3)

P (4) =X (4, L2)
P(5)=X(5,L1)
SUM=P (1) +P (2) +P (3) +P (4) +P (5)

IF(SUM.EcQ.0)THEN
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SUM=REAL (NPOP)

I0=1

END IF

PRN=RUNF (MX)

IF(SUM.EQ. 1)PRN=0

DO 510 L=1,NPOP

IF(P(L).EQ.0.AND.10.EQ.0)GO TO 510

Ni =N 1+1

IF(PRN.LT. (N1/SUM))THEN

NWIN2(L,NS)=NWIN2(L,NS)+l

GO TO 520

END IF

510 CONTINUE

520 CONTINUE

530 CONTINUE

570 CONTINUE

580 CONTINUE

590 CONTINUE

591 CONTINUE

1100 CONTINUE

DO 1105 K=2,NVECT

DO 1102 J=1,NPOP
NWIN2(J ,K)=NWIN2(J ,K)+NWIN2(J,K-1)

1102 CONTINUE

1105 CONTINUE

DO 1111 K=1,NVECT

NTIES=l

DO 1110 J=2,NPOP

IF(NWIN2(1,K).LT.NWIN2(J,K))GO TO 1111

IF(NWIN2(1,K) .EQ.NWIN2(J,K))NTIES=NTIES+1
IF(J.E(Q.NPOP)PCS2(K)=PCS2(K)+1.0/NTIES

1110 CONTINUE

1111 CONTINUE

2000 CONTINUE

DO 2015 I=1,NVECT

PCS2 (I)=PCS2 (I) /REAL(NREPS)

PCS1 (I)=PCS1 (I)/REAL(NREPS)

SE1(I)=(PCS1(I)*(1.0-PCS1(I))/REAL(NREPS))**.5

SE2(I)=(PCS2(I)*(1.0-PCS2(I))/REAL(NREPS))**.5

RTO=PCS2(I)/PCS1 (I)
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c FILE 4 SETUP TO READ DIRECTLY INTO MINITAB OR OTHER SPREADSHEET

C

WRITE(4,2050)NPOP,I,PCS1(I),PCS2(I),RTO,SEI(I),SE2(I)

C

2015 CONTINUE

2050 FORMAT(1X,214,2X,5(F8.6,2X))

STOP

END
C

C

c PROGRAM TO GENERATE STANDARD MLE ESTIMATES FOR MULTINOMIAL
c SUCCESS PROBABILITIES AND NEW AVC ESTIMATES. GATHERING

c DATA TO COMPARE THE VARIANCES BETWEEN THE TWO ESTIMATES

c AND TO CONSTRUCT CONFIDENCE INTERVALS.

c SETUP FOR K=2,3, AND 5 POPULATIONS UP TO V=200.

c INITIALLY SET UP TO ESTIMATE ONLY P1 (BEST POP),

c ALTHOUGH VARIABLES ARE DIMENSIONED TO CALCULATE ALL Pj'S.

c ONLY MODELS EXPONENTIAL POPULATIONS.
C

c VARIABLE TABLE

c

c NOTE: ONLY VARIABLES UNIQUE TO THIS PROGRAM DEFINED HERE.

c SEE VARIABLE TABLE IN PROGRAM MSP FOR MORE.

c

c NAME DESCRIPTION

c

c AP(J) AVC ESTIMATE FOR Pj (P-BARj).

C

c BP(J) BEM (OR MLE) ESTIMATE FOR Pj (P-HATj).

c

c VK V**K.

c

c PA(J) ACTUAL Pj FOR POPULATION J.

C

c NL1(I) COUNT USED IN CALCULATING FIRST TYPE OF

c U-STAT COVARIANCE TERM - L(1,0). INDEXED

c BY V.
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C

c NL1T SUM OF NL1(I), I=1,...,V.
c

c NL2(I) COUNT USED IN CALCULATING SECOND TYPE OF

c U-STAT COVARIANCE TERM - L(0,1).
c

c NL2T SUM OF NL2(I), I=1,.. .,V.
C

c NV TOTAL NUMBER OF PSEUDO-VECTOR PAIRS WITH A

c SINGLE COMMON ELEMENT FOR GIVEN K AND V.

c USED IN U-STAT COVARIANCE CALCUALTIONS.

C

c VAP(J) VARIANCE OF P-BARj.
c

c VBP(J) VARIANCE OF P-HATj.

C

c AHW HALF-WIDTH OF AVC CONFIDENCE INTERVAL.
C

c BHW HALF-WIDTH OF MLE CONFIDENCE INTERVAL.

c

c ALL(J) AVC LOWER-CONFIDENCE LIMIT FOR P-BARj.
C

c AUL(J) AVC UPPER-CONFIDENCE LIMIT FOR P-BARj.
C

c BLL(J) MLE LOWER-CONFIDENCE LIMIT FOR P-HATj.
C

c BUL(J) MLE UPPER-CONFIDENCE LIMIT FOR P-HATj.

C

c AHIT(J) NUMBER/PCT OF AVC C.I. THAT CAPTURE PA(J).
C

c BHIT(J) NUMBER/PCT OF MLE C.I. THAT CAPTURE PA(J).

C

c WA(J) AVERAGE AVC C.I. WIDTH FOR P-BARj.
C

c WB(J) AVERAGE MLE C.I. WIDTH FOR P-HATj.
C

PROGRAM CIK5

REAL LAMBDA,MU,X(5,500),XCNT(5),FC(5)

REAL ALL(5),AUL(5),BLL(5),BUL(5),PA(5),AHIT(5),BHIT(5)
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REAL XJ(5,5),NL1(200),NL1T,NL2(200),NL2T,NV,VK,NCP,NCJ

REAL BHW(5),AHW(5),WB(5),WA(5),M3(200,200),M4(200,200)

REAL VAP(5),VBP(5),AP(5),BP(5),TAP(5),M5(200,200)

REAL NM3 ,NM5 ,M3MIN ,M4MIN,M5MIN ,M3MAX ,M4MAX ,M5MAX

INTEGER*4 JX1(3) ,JX2(3) ,JX3(3) ,JX4(3) ,JX5(3)

INTEGER NWIN1(5)

c

c FILES TO OUTPUT RESULTS TO

c

OPEN(4 ,FILE=' cik5v20a. dat' ,STATUS='UNKNOWN')

C

c INITIALIZE VARIABLES

C

NREPS=10000

NVECT=20

NPOP=5

LAMBDA=1 .0

MU=1 .1227

C

c ADDITIONAL VARIABLES TO INITIALIZE FOR CONFIDENCE INTERVAL RUNS

C

Z95=1.96

PA(1)=.2308

PA(2)=. 1923
PA(3)=. 1923

PA(4)=. 1923

PA(5)=. 1923

C

c SEEDS FOR L'ECUYER'S RN GENERATOR

C

JX1 (2) =748932582

JXi (3) =639287

JX2 (2) =64298628

JX2 (3) =196998

JX3 (2)=40689408

JX3 (3)=122595 154
JX4 (2) =680620 100

JX4 (3) =335083118

JX5 (2) =64918046

JX5 (3)=812715188

C
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CVL 1=0
CVL2=0
CBP=0
CAP=0
CVBP=0
CVAP=0
BSSQ=0
ASSQ=0
DO 7 J=1,NPOP

BHIT(J)=0

AHIT(J)=0

WB(J)=0

WA (J) =0

7 CONTINUE

10 CONTINUE
DO 2000 I=1,NREPS

DO 30 J=1,NPOP

BP(J)=0

AP(J)=0

FC(J)=0

NWIN1 (J)=0

30 CONTINUE

DO 40 K=1,NVECT

NL1 (K) =1

NL2 (K) =1

40 CONTINUE

C

c RANDOM VARIATE GENERATION DONE HERE. SEPARATE SET OF RN

c STREAMS FOR EACH POPULTION.

c

DO 60 K=1,NVECT

X(1 ,K)=-(1/LAMBDA)*LOG(1-RUNF(JX1))

X(2 ,K)=-(1/MU) *LOG(1-RUNF(JX2))

IF(NPOP.EQ.2)GO TO 60

X(3,K)=- (1/MU) *LOG(1-RUNF(JX3))

IF(NPOP.EQ[3)GO TO 60

X(4,K)=-(1/MU)*LOG(1-RUNF(JX4))

IF(NPOP.EQ.4)GO TO 60

X(5,K)=-(1/MU)*LOG(1-RUNF(JX5))

60 CONTINUE

C

c METHOD I (BEM OR MLE)
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c FOR POINT ESTIMATES AND CONFIDENCE INTERVALS
c DO NOT CALCULATE PCS.

C

89 DO 100 K=1,NVECT

BEST=X(1 ,K)

DO 90 J=2,NPOP

TM=AMAX1 (BEST,X(J ,K))
IF (TM. GT.BEST) BEST=TM

90 CONTINUE

DO 95 L=1,NPOP

IF(X(L,K) .EQ.TM)NWIN1(L)=NWIN1(L)+1

95 CONTINUE

100 CONTINUE

DO 115 J=1,NPOP

BP(J)=NWIN1 (J)/REAL(NVECT)

115 CONTINUE

BPSQ=BP(1)*BP(1)

BSSQ=BSSQ+BPSQ

c

c METHOD II (AVC)
c

NM2=NVECT

NL1T=0

NL2T=0

DO 900 K1=1,NM2
DO 800 K2=1,NM2

M3(K1 ,K2)=0

M4(K1 ,K2)=0
M5(K1 ,K2)=0

800 CONTINUE

900 CONTINUE

IF(NM2.EQ. 1)THEN

NV= 1

ELSE

RNM2=REAL (NM2)

RNPOP=REAL (NPOP)
NV=RNM2**RNPOP* (RNM2-1 .0) ** (RNPOP-1) /2.0

END IF

VK=RNM2 **RNPOP

CALL SORTV (NPOP ,NM2 ,X)
DO 1160 K=1,NM2

DO 1148 J=1,NPOP
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XCNT(J)=1
DO 1146 M=1,NPOP

DO 1142 L=1,NM2
IF(M.NE.J.AND.X(J,K) .GT.X(M,L))THEN

XJ(J,M)=NM2-(L-1)

GO TO 1145
ELSE

IF(L.EQ.NM2)XJ(J,M)=O

END IF

1142 CONTINUE

1145 IF(M.NE. J)XCNT(J)=XCNT(J)*XJ(J,M)

1146 CONTINUE

1148 CONTINUE

DO 1149 J=1,NPOP

FC(J)=FC(J)+XCNT(J)

1149 CONTINUE

c THE COVARIANCE CALCULATIONS ARE DONE HERE. QUITE DIFFERENT

c FOR DIFFERENT K, SO HAVE SEPARATE SECTIONS BASED ON K. BASIC

c IDEA IS TO COUNT UP NUMBER OF VECTOR PAIRS THAT MEET THE

c CONDITIONS FOR THE PROBABILITY STATMENT ASSOCIATED WITH

c L(1,O) OR L(0,1). DO NOT HAVE TO FORM ALL V**K PSUEDO-REPS

c TO SOLVE. CAN COUNT UP NUMBER OF PAIRS WHERE CONDITIONS ARE

c MET AND THEN SUBTRACT OFF ANY THAT HAVE COMMON ELEMENTS OTHER

c THAN THE ONE DESIRED.

IF(NPOP.EQ~.2)THEN

NL1(1)=XJ(1,2)*(XJ(1,2)-1)/2

NL1(2)=(NM2-XJ(1 ,2))*(NM2-XJ(1 ,2)-1)/2

IF(XJ(1,2) .LE.1)NL1(1)=O

IF(XJ(1,2) .EcQ.NM2)NL1(2)=O

NL1T=NL1T+NL1 (1)

NL1T=NL1T+NL1 (2)
NL2(1)=(NM2-XJ(2,1))*(NM2-XJ(2,1)-1)/2

IF(XJ(2,1) .EQ.NM2)NL2(1)=O

IF(XJ(2,1) .LE.1)NL2(2)=O

NL2T=NL2T+NL2 (1)

NL2T=NL2T+NL2 (2)

GO TO 1160

END IF

IF(NPOP.EQ.3)THEN

139



NCJ=MAX(XJ(1,2) ,XJ(1,3))

NCP=MIN(XJ(1,2) ,XJ(1,3))

NLI (1)=(NCP* (NCP-1)/2)*(NCJ**2-NCJ)

IF(XJ(1,2) .LE.1.OR.XJ(1,3) .LE.1)NL1(1)=O

NL1T=NL1T+NL1 (1)

END IF

DO 1158 K2=1,NM2

IF(X(1,K) .GT.X(2,K2))M3(K,K2)=XJ(1,3)

IF(NPOP.EQ.3)GO TO 1158

IF(X(1,K) .GT.X(2,K2))M4(K,K2)=XJ(1,4)

IF(X(1,K) .GT.X(2,K2))M5(K,K2)=XJ(1,5)

1158 CONTINUE

IF(NPOP .EQ.5)THEN

BU=XJ (1, 2)

BW=XJ (1, 3)

BY=XJ(1 ,4)

BZ=XJ(1 ,5)

WYMIN=MIN (BW ,BY)

WZMIN=141N(BW,BZ)

YZMIN=MIN(BY,BZ)

NL1(1)=BU*(BU-1)/2*((BW*BY*BZ)**2-(BW*BY+BW*BZ+BY*BZ
+ -WYMIN-WZMIN-YZMIN) *BW*BY*BZ)

NL1T=NL1T+NL1 (1)

END IF

1160 CONTINUE

IF(NPOP.EQ.2)GO TO 1168

NM3=0

NM5=0

DO 1165 K1=1,NM2

DO 1163 K3=1,N142
IF(K3.LE.K1)GO TO 1163

DO 1162 K2=1,NM2

IF(NPOP.EQ.5)GO TO 1161

NM3=M3(K1,K2)*M3(K3,K2)-MIN(M3(K1,K2),M3(K3,K2))

NL2T=NL2T+NM3

GO TO 1162

1161 M51=M3(K1,K2)*M4(K1,K2)*M5(K1,K2)
M52=M3(K3 ,K2) *M4 (K3,K2)*M5 (K3 ,K2)

M3MIN=MIN(M3(K1 ,K2) ,M3(K3,K2))

M4MIN=MIN(M4(K1 ,K2) ,M4(K3,K2))

M5MIN=MIN(M5(K1 ,K2) ,M5(K3,K2))

I3MAX=MAX(M3(K1 ,K2) ,M3(K3,K2))
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M4MAX=MAX(M4(K1,K2) ,M4(K3,K2))

M5MAX=MAX(M5(K1,K2) ,M5(K3,K2))

A1=M3MAX*M4MAX-MIN (M3MAX ,M4MAX) +1

A2=M3MAX*M5MAX-MIN (M3MAX ,M5MAX)

A3=M4MAX*M5MAX-MIN (M4MAX ,M5MAX)

NM5=M51*M52- (A1+A2+A3) *M3MIN*M4MIN*M5MIN

NL2T=NL2T+NM5

1162 CONTINUE

1163 CONTINUE

1165 CONTINUE

1168 CONTINUE

DO 1169 J=1,NPOP

TAP(J)=FC(J)/VK

AP(J)=AP(J)+TAP(J)
1169 CONTINUE

APSQ=AP(1)*AP(1)

ASSchASSQ+APSQ

C VL 1=NL T/N V

CVL2=NL2T/NV

c

c THE FOLLOWING SECTION DOES FINAL CALCULATIONS FOR Pj'S AND CI'S
C

CVL1=CVL1-AP (1)**

CVL2=CVL2-AP (1) **2

VAP (1) =(CVL1+ (NPOP-1) *CVL2) /NVECT

VBP(1)=(BP(1)*(1.O-BP(1)))/NVECT

C

c THESE ARE JUST RUNNING TOTALS FOR POINT ESTIMATES AND

c VARIANCES

C

CBP=CBP+BP(1)

CAP=CAP+AP (1)

CVBP=CVBP+VBP (1)
CVAP=CVAP+VAP (1)

C

c HERE IS WHERE THE FINAL CONFIDENCE INTERVAL CONSTRUCTION IS

c DONE. THE ONLY DATA WE ARE GATHERING HERE IS WHETHER OR NOT

c EACH AVC AND BEM CI IS A HIT OR NOT, AND THE WIDTH OF THE

c INTERVAL.

DO 1200 J=1,1

BHW (J) =Z95*SQRT (VBP (J))
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BLL(J)=BP(J)-BHW(J)

BUL( 3) =BP ( ) +BHW( 3)
WB (3) =WB (3)+2*BHW (3)
IF(BLL(J) .LE.PA(J) .AND.BUL(J) .GE.PA(J))BHIT(J)=BHIT(J)+l

AHW(J)=Z95*SQRT(VAP(J))

ALL(J)=AP(J)-AHW(J)

AUL (3)=AP (3)+AHW (3)

WA (3) =WA (3)+2*AHW (3)
IF(ALL(J).LE.PA(J).AND.AUL(J).GE.PA(J))AHIT(J)=AHIT(J)+l

1200 CONTINUE

2000 CONTINUE

c HERE WE CALCULATE THE PERCENTAGE OF HITS WE HAD WITH EACH METHOD

c OF CONFIDENCE INTERVALS AND ALSO THE AVERAGE CI WIDTH

c

DO 2200 J=1,1

BHIT(J)=BHIT(J) /REAL(NREPS)

WB(J)=WB(J) /REAL(NREPS)

AHIT (3)=AHIT (3)/REAL (NREPS)

WA(J)=WA(J) /REAL(NREPS)

2200 CONTINUE

C

cAS A CHECK ON THE BIAS OF OUR AVC VARIANCE ESTIMATE, CALCULATE
cTHE SAMPLE VARIANCE ASSOCIATED WITH EACH METHOD HERE.

C VR=BS-CPCP/RP)/NES1

SVARB=(BSSQ-(CBP*CBP/NREPS) )/(NREPS-1)

SVAR=(A/NSS(CPC/NE))/RE-)

CBP=CBP/NREPS

CAP=CP/NREPS

CVBP=CVBP/NREPS

VA=CVPNR
VBIASB=CVMP-SVARB

cFILE 4 SETUP TO PRINT RESULTS IN READABLE FASHION

WRITE(4,*)'CONFIDENCE INTERVAL RESULTS EXP POPULATIONS'

WRITE(4,*)'K=5 AND P1=0.2308'

WRITE(4,*)

WRITE(4,*)'BEM RESULTSI

WRITE(4,*)' V AVG VAR SAMPLE VAR VAR BIAS'

WRITE (4,2500) NVECTCVBP ,SVARB ,VBIASB
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WRITE(4,*)'

WRITE(4,*)' V PCT HITS AVG CI WIDTH'
WRITE(4,2600)NVECT,BHIT(1) ,WB(1)

WRITE(4,*)'I

WRITE(4,*) 'AVG RESULTS'
WRITE(4,*)' V AVG VAR SAMPLE VAR VAR BIAS'
WRITE (4,2500) NVECT ,CVAP ,SVARA ,VBIASA
WRITE(4,*)'I

WRITE(4,*)' V PCT HITS AVG CI WIDTH'
WRITE(4,2600)NVECT,AHIT(l) ,WA(1)

2500 FORMAT(lX,I4,2X,3(F8.4,4X))

2600 FORMAT(1X,I4,2X,2(F8.4,4x))

STOP

EN'D
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